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Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate gen-
etic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure
(PP), we genotyped ∼50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ∼2100 can-
didate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies
in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in
an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between
rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated
with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1,
ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance
(P < 2.4 3 1026). We then replicated these associations in an independent set of 65 886 individuals of
European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in
the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel
SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular
hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed mul-
tiple previously reported associations. Our findings extend our understanding of genes involved in BP regu-
lation, some of which may eventually provide new targets for therapeutic intervention.
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INTRODUCTION

Blood pressure (BP) is a cardinal risk factor for cardiovascular
disease (CVD). Systolic BP (SBP) and diastolic (DBP) levels
are associated with increased risk of atherosclerotic vascular
disease and other cardiovascular causes of death (1). Much
of the excess CVD risk imparted by BP elevation can be ame-
liorated through interventions to decrease BP (2). The identifi-
cation of novel genes and pathways involved in BP regulation
may highlight new ways of reducing BP and CVD risk asso-
ciated with hypertension. The mean arterial pressure (MAP)
and pulse pressure (PP, the difference between SBP and
DBP) are single BP components associated with CVD risk
(3–5). The latter is an indicator of conduit artery stiffness
and is known to increase with age, as aortic elasticity decreases.
To date, �50 common genetic variants associated with BP and
hypertension have been reported, largely through genome-wide
association studies (GWAS), meta-analyses and admixture
mapping approaches (6–16). The identification of common var-
iants associated with BP may be enriched through further gene-
centric approaches (17–19). Accordingly, we tested the hypoth-
esis that candidate gene analysis would identify known and
novel associations with SBP, DBP, MAP and PP and would
confirm previously reported associations. To further investigate
and discover associations with BP, we genotyped approximate-
ly 50 000 single-nucleotide polymorphisms (SNPs) on a gene-
centric array (ITMAT-Broad_CARe [IBC] array, Illumina San
Diego, CA, USA) that captures variation in �2100 candidate
genes for cardiovascular traits including BP (20) in 61 619 indi-
viduals of European ancestry. We identified two novel
BP-associated loci, at the candidate genes MDM4 and HRH1
and have validated these associations through in silico replica-
tion analysis in a large set of independent samples.

RESULTS

Discovery association analyses

In the primary discovery meta-analysis, four BP traits were
analyzed in 61 619 individuals from 27 cohorts, as described
in Table 1. We analyzed SBP, DBP, MAP and PP as continu-
ous traits. Cohort characteristics, including age, sex, BP values
and the proportion of individuals treated with BP lowering med-
ications, are provided in Table 1. The details of the cohorts are
provided in the Supplementary Material, Table S1 and Supple-
mentary Materials.

Association analyses were successfully carried out for up to
48 372 SNPs, and summaries of the quality-control (QC) steps
and numbers of SNPs removed at each step are provided in
Supplementary Material, Table S2A. Cohort-specific genomic
control inflation factors, lGC, did not suggest the presence of
inflation (Supplementary Material, Table S3). Meta-analysis
quantile–quantile plots are shown in Supplementary Material,
Fig. S1 and P-values for association for all SNPs are provided
in Supplementary Material, Table S4. We identified 22 signifi-
cant SNP-trait associations with SBP, DBP, MAP and PP at 12
different loci (P , 2.4 × 1026), including two novel loci near
HRH1 and MDM4 for BP traits and one novel SNP-trait associ-
ation in the SOX6 locus, a region previously described in asso-
ciation with MAP.

Replication analyses

Replication testing was performed in 65 866 additional indivi-
duals, including 43 266 individuals in seven cohorts with
genome-wide SNP genotypes imputed to HapMap (Supplemen-
tary Material, Table S2B) and 22 600 individuals genotyped on
the same IBC chip used for the discovery analyses. Through the
joint analysis of SNPs considered relevant during the discovery
phase combined with replication data, we identified robust asso-
ciation of 22 SNP-trait associations at 12 independent loci
meeting our array-wide significance threshold of P , 2.4 ×
1026: six loci were associated with DBP (MTHFR, MDM4,
HFE, SH2B3/ATXN2, CSK, FURIN), nine loci were associated
with SBP (MTHFR, HRH1, CYP17A1, LSP1, SOX6, ATP2B1,
SH2B3/ATXN2, CSK, FURIN), six loci were associated with
MAP (MTHFR, ADRB1, ATP2B1, ATXN2, CSK, FURIN) and
one locus associated with PP (CYP17A1). The association find-
ings are summarized in Table 2.

We confirmed previously reported BP associations at 10
loci, and identified two novel loci: rs347591 associated with
SBP (chromosome 3p25, in an intron of HRH1, P ¼
1.57 × 1028) (Fig. 1A); rs2169137 associated with DBP
(chromosome 1q32, in an intron of MDM4, P ¼
5.9×1028) (Fig. 1B). We additionally found evidence of asso-
ciation of rs281413 (chromosome 19p13 in an intron of ICAM3)
with DBP, in our discovery analysis, although it was not con-
firmed in the replication analysis (P ¼ 3.08 × 1026 in discov-
ery, P ¼ 1.4 × 1025 in the joint analysis). Finally, one of the
SNP-trait associations we identified was novel in our analysis,
with the association of rs2014408 with SBP (chromosome
11p15, in an intron of SOX6, P ¼ 5.71 × 10210), whereas pre-
viously only association with MAP had been reported. A second
Bonferroni correction of our results for testing four traits did not
result in a change in the overall results, so we present the ori-
ginal results here, as the four traits are highly correlated. Full
association results for SNPs in our discovery analysis with asso-
ciation P , 1 × 1025 are reported in Supplementary Material,
Table S5. Despite ascertainment biases in some of the discovery
cohorts, due to inclusion or exclusion based upon BP or hyper-
tension status (as noted in Supplementary Material, Table S1),
we show replication of the key findings. We comprehensively
compared the results of our analysis with all published associa-
tions at the time of this report (6–13,19) (Supplementary Ma-
terial, Table S6). We reviewed 77 previously reported loci for
our BP traits of interest and found that 43 were represented
on our genotyping array, with one region containing a proxy
SNP (r2 ¼ 0.66) rather than the index SNP previously reported
(Supplementary Material, Table S4). At a nominal association
threshold (P ¼ 0.05), 32 SNPs were associated with one or
more BP traits in our study, and with a multiple testing correc-
tion (P , 0.00116), we observed 21 SNPs with BP associations.

Sex interaction

In a secondary sex-specific analysis of our discovery sample
(Supplementary Material, Table S7), we had no new signifi-
cant associations. To follow-up possible sex differences in
the two novel associations identified in our discovery efforts,
we tested for interactions of rs347591 (HRH1) and
rs2169137 (MDM4) with sex and identified a modest sex-
specific effect for all four continuous BP traits at rs2169137
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(P-value for interaction was 0.0058 for SBP; 0.055 for DBP;
0.014 for MAP and 0.033 for PP) (Supplementary Material,
Table S8), with the association observed in women but not

in men (in females only SBP beta was 0.041, se 0.322, and
in males only SBP beta was 0.82, se 0.307, P-value for inter-
action of rs2169137 with sex was 0.0058).

Table 1. Clinical characteristics of discovery and replication cohorts

Age Female/
male

SBP DBP MAP PP BMI Taking
anti-
hypertensive
medication

Discovery cohorts
AMC-PAS 42.9 + 5.3 180/563 128.6 + 17.9 79.9 + 10.7 96.1 + 12.1 48.8 + 13.1 26.9 + 4.1 33.2%
Amish 47.6 + 15.0 713/691 121.9 + 16.5 75.3 + 9.4 90.8 + 10.8 46.6 + 12.2 27.3 + 5.0 16.4%
ARIC 54.2 + 5.7 5124/4453 118.3 + 17 71.5 + 10 87.1 + 11.3 46.7 + 12.7 26.9 + 4.9 25.1%
BHS 22.5 + 4.4 291/228 111.5 + 10.2 71.8 + 8.5 85 + 8.3 39.7 + 8 24.7 + 6.1 2.7%
CARDIA 40.6 + 4.1 703/623 102.2 + 30.5 71.9 + 11.2 84.5 + 11.4 37.7 + 8.8 26.9 + 6.4 3.7%
CCCS 64.2 + 9.7 555/1402 136.94 + 19.04 78.33 + 10.61 156.48 + 23.57 58.61 + 15.69 29.2 (4.8)/

29.8 (6.5)
88.7%

CFS 40.9 + 19.9 302/252 121.1 + 16.6 71.8 + 11.7 88.2 + 12.2 49.3 + 12.4 30.1 + 8.8 8.8%
CHS 72.6 + 6.3 2208/1722 135.3 + 21.5 69.9 + 11.6 91.7 + 12.9 65.4 + 18.6 26.3 + 4.8 39.7%
CLEAR 67.8 + 9.6 0/1365 151.4 + 22.4 82.2 + 12.3 105.3 + 13.8 69.2 + 18.4 28.1 + 5.0 67.0%
EPIC_NL 54.06 + 10.11 4057/1137 133.13 + 21.22 80.46 + 10.93 97.98 + 13.20 52.65 + 15.68 26.77 + 4.45 N/A
FHS 40.9 + 9.1 3775/3134 118.6 + 14.3 76.4 + 9.8 90.5 + 10.6 42.2 + 9.4 26.1 + 5 5.5%
GIRaFH 44.5 + 11.7 882/812 134.9 + 19.2 82.0 + 10.5 99.7 + 12.3 52.9 + 14.4 25.1 + 3.5 9.3%
GQ2 65.5 + 10.5 385/93 130.51 + 22.40 72.71 + 12.89 149.78 + 27.66 57.81 + 18.47 29.7 (7.7)/

29.5 (6.3)
76.2%

INVEST 69.4 + 9.5 467/580 160.8 + 17.4 90.6 + 10.1 114.0 + 10.6 70.1 + 15.9 29.0 (4.7)/
28.4 (6.2)

82.6%

LURIC 58.1 + 8.6 558/1480 151.2 + 24.4 89.8 + 12.1 110.3 + 15.0 61.4 + 17.6 27.7 + 4.2 85.6%
MEDAL 62.9 + 9.0 1178/2820 136.8 + 16.0 81.7 + 9.6 94.9 + 8.6 52.9 + 11.5 30.5 + 6.3 1.4%
MESA 62.7 + 10.3 1199/1097 123.5 + 20.8 70.1 + 10.2 87.9 + 12.3 53.4 + 16.7 27.8 + 5.1 33.3%
MONICA/

KORA F3
57.6 + 8.1 755/649 131.8 + 19.4 83.3 + 10.3 99.5 + 12.6 48.5 + 13.2 27.8 + 4.5 30.1%

MONICA/
KORA S12

51.8 + 9.9 431/549 133.6 + 19.1 81.5 + 11.1 98.8 + 12.5 52.1 + 14.6 27.2 + 4.0 16.6%

NSHS95 49.4 + 18.4 857/899 126.6 + 17.7 76.7 + 11.6 93.3 + 11.8 49.9 + 15.8 27.1 + 5.5 N/A
PEAR 50.1 + 9.4 194/244 151.8 + 12.4 98.0 + 5.7 115.9 + 6.9 53.7 + 10.8 [30.3 (4.4)/

30.4 (6.1)]
0%

PennCAC 56.0 + 8.0 631/1145 132 + 23.2 72.4 + 11.2 52.6 + 12.6 59.5 + 19.7 29.8 + 5.9 N/A
PennCath 52.0 + 9.0 739/1386 127 + 15.1 76.7 + 9.5 62.9 + 10.5 51.9 + 12.3 30.1 + 5.9 32.8%
SMART 59.36 + 12.25 206/299 158.64 + 18.57 94.76 + 11.80 116.06 + 12.87 63.88 + 13.78 27.35 + 4.62 39.4%
WHI 68.0 + 6.6 7606/0 133.0 + 18.8 75.0 + 9.7 94.3 + 11.0 58.0 + 16.2 28.3 (6.2) 33.3%

Replication cohorts
AIBIII 52.8 (9.2) 249/209 119.9 (13.7) 75.4 (7.6) 90.2 (8.8) 44.5 (10.3) 25.7 (3.6) 100.0%
ASCOT 63 (8.1) 224/1015 161.4 (17.8) 92.9 (9.9) 115.7 (10.6) 68.5 (16.1) 29.1 (4.6) 52.9%
BRIGHT

(controls)
58.7 (8.9) 1088/647 123 (10.5) 76.4 (7.2) 91.9 (7.5) 46.7 (8.3) 25.3 (3.3) 100.0%

BRIGHT
(cases)

58 (10.3) 1144/775 154.3 (21.1) 93.9 (11.3) 114 (13.3) 60.4 (15.7) 58 (10.3) 51.8%

BWHHS 68.85 (5.51) 3373/0 146.53 (26.59) 79.16 (12.85) 102 (15) 67.6 (19) 27.25 (5.95) 76.8%
GRAPHIC 39.30 (14.50) 1004/1020 127.09 (17.84) 79.12 (10.96) 95.1 (12.5) 48 (11.9) 26.11 (4.61) 93.7%
LIFELINES 47.3 + 11.2 4640/3483 127.9 + 15.7 75.1 + 9.1 52.7 + 11.8 92.7 + 10.3 26.3 + 4.3 15.5%
MDC 57.8 (5.9) 1074/772 115.6 (5.8) 73.6 (5.3) 87.6 (4.7) 42 (6) 24.3 (3.3) 100.0%
NBS 41.36 (12.37) 1183/1169 N/A N/A N/A N/A N/A N/A
NESDA 41.5 + 12.7 1166/551 135.3 + 20.2 81.7 + 11.8 99.6 + 13.9 53.6 + 12.7 25.5 + 4.9 12.8%
NORDIL 56 (4) 979/940 177.3 (14.6) 105.9 (5.5) 129.7 (7.1) 71.5 (13.9) 28.3 (4.6) 100.0%
PREVEND 49.6 + 12.5 1752/1869 129.1 + 19.9 74.1 + 9.9 54.9 + 13.9 92.4 + 12.5 26.1 + 4.3 14.2%
Procardis 59.34 (9.93) 1634/1564 130.75 (17.11) 79.63 (10.03) 96.7 (11.2) 51.1 (13.4) 26.81 (4.37) 83.8%
Rotterdam

Study
69.4 (9.1) 3327/2327 144.1 (24.2) 76.9 (12.6) 99.3 (15.0) 67.1 (18.5) 26.3 (3.7) 32.5%

TRAILS
clinical cohort

15.8 + 0.6 97/217 119.1 + 12.6 61.0 + 6.6 80.4 + 7.3 58.1 + 11.4 21.5 + 3.6 N/A

TRAILS population
cohort

16.2 + 0.7 693/642 118.1 + 12.4 61.1 + 6.9 80.1 + 7.4 57.7 + 10.6 21.2 + 3.2 N/A

WGHS 54.2 + 7.1 22 625/0 125.5 + 16.4 78.0 + 10.7 93.8 + 11.9 47.6 + 10.4 25.9 + 5.0 12.9%
WHII 60.83 (6.0) 1845/3210 128.1 (16.7) 74.6 (10.5) 92.4 (11.8) 53.5 (11.2) 26.7 (4.3) 81.4%

Mean + standard deviation is given for each phenotype, except % were indicated. BP values shown are actual values without modification for medication
treatment.
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Table 2. Loci associated with hypertension traits using discovery and replication data (Betas and SEs corresponding to the trait are highlighted in bold)

Discovery results Replication results Discovery + replication results
Gene SNP CHR BP A1 A2 CAF Beta SE DBP MAP PP SBP DBP MAP PP SBP DBP MAP PP SBP

DBP
MTHFR rs13306561 1 11788391 G A 0.154 20.5224 0.0852 8.641E210 9.93E212 1.33E209 2.6E213 6.91E214 8.51E204 3.82E211 1.75E221 4.49E224 3E219
MDM4 rs2169137 1 202764536 G C 0.271 20.3552 0.0702 4.201E207 0.007492 5.86E208
HFE rs1799945 6 26199158 G C 0.146 0.406 0.0864 2.615E206 6.34E212 2.78E216
ATXN2 rs10774625 12 110394602 A G 0.505 0.4929 0.0764 1.103E210 4.61E210 1.56E207 5.98E209 8.88E211 9.37E210 4.94E218 2.4E219 8.12E216
CSK rs7085 15 72882536 T C 0.281 0.4403 0.0677 7.936E211 5.01E211 6.68E211 1.58E205 3.54E208 1.33E205 2.5E214 2.14E217 3.48E214
FURIN rs2071410 15 89221944 G C 0.371 0.3661 0.066 2.882E208 4.30E208 0.00013 1.19E208 2.27E209 2.36E209 1.78E215 5.31E216 2.92E212

MAP
MTHFR rs13306561 1 11788391 G A 0.154 20.6665 0.0979 8.641E210 9.93E212 1.33E209 2.6E213 6.91E214 8.51E204 3.82E211 1.75E221 4.49E224 3E219
ADRB1 rs7076938 10 115779365 C T 0.282 20.3869 0.0776 6.05E207 9.72E209 3.14E214
ATP2B1 rs2681472 12 88533090 G A 0.172 20.612 0.1129 5.87E208 3.99E209 6.95E210 3.3E211 2.24E216 7.68E219
ATXN2 rs10774625 12 110394602 A G 0.505 0.5343 0.0857 1.103E210 4.61E210 1.56E207 5.98E209 8.88E211 9.37E210 4.94E218 2.4E219 8.12E216
CSK rs7085 15 72882536 T C 0.281 0.5109 0.0778 7.936E211 5.01E211 6.68E211 1.58E205 3.54E208 1.33E205 2.5E214 2.14E217 3.48E214
FURIN rs6227 15 89226236 T C 0.316 0.764 0.1506 4.081E208 3.65E209 3.88E207 1.86E206 1.02E210 3.77E209 9.83E213 3.35E218 8.01E215

PP
CYP17A1 rs3824755 10 104585839 C G 0.096 20.6438 0.1289 5.93E207 2.46E207 6.06E204 0.000384 1.52E209 3.77E210

SBP
MTHFR rs13306561 1 11788391 G A 0.154 20.8657 0.1428 8.641E210 9.93E212 1.33E209 2.6E213 6.91E214 8.51E204 3.82E211 1.75E221 4.49E224 3E219
HRH1 rs347591 3 11265122 G T 0.345 20.5284 0.1071 8.14E207 0.001192 1.57E208
CYP17A1 rs3824755 10 104585839 C G 0.096 20.6438 0.1289 5.93E207 2.46E207 6.06E204 0.000384 1.52E209 3.77E210
LSP1 rs661348 11 1861868 C T 0.437 0.472 0.1038 5.43E206 7.55E211 3.39E215
SOX6 rs2014408 11 16321858 T C 0.21 0.5571 0.1246 7.74E206 1.03E205 5.71E210
ATP2B1 rs2681472 12 88533090 G A 0.172 20.9733 0.1654 5.87E208 3.99E209 6.95E210 3.3E211 2.24E216 7.68E219
ATXN2 rs10774625 12 110394602 A G 0.505 0.6614 0.1261 1.103E210 4.61E210 1.56E207 5.98E209 8.88E211 9.37E210 4.94E218 2.4E219 8.12E216
CSK rs7085 15 72882536 T C 0.281 0.7412 0.1135 7.936E211 5.01E211 6.68E211 1.58E205 3.54E208 1.33E205 2.5E214 2.14E217 3.48E214
FURIN rs6227 15 89226236 T C 0.316 0.764 0.1506 4.081E208 3.65E209 3.88E207 1.86E206 1.02E210 3.77E209 9.83E213 3.35E218 8.01E215
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Conditional analyses

For the loci described in Table 2, except those containing
fewer than three genome-wide significant SNPs, conditional
analyses were conducted using the allele dosage of the SNPs
within a 500 kb (+250 kb) window around the most signifi-
cant SNP per locus as a covariate in a subset of discovery
cohorts (ARIC, CARDIA, CHS and MESA). Statistical
models were identical to those used in the discovery analyses
except for the additional SNP covariates. No SNPs remained
significant in these conditional models after correcting the
total number of tests (SNPs) in the 500 kb window, suggesting
that only the strongest signal of association at each locus
explained our findings. The complete results for these analyses
are shown in Supplementary Material, Table S9.

Annotations of the identified loci

Annotations for the 12 loci associated with BP traits in our
study showed that the majority of the variants we identified
were located within an intron of the corresponding gene
(rs13306561 in MTHFR; rs2169137 in MDM4; rs3824755 in
CYP17A1; rs661348 in LSP1; rs2014408 in SOX6; rs2681472
in ATP2B1; rs4766578 and rs10774625 in ATXN2; rs8032315
and rs2071410 in FURIN; rs347591in HRH1). In aggregate,
the associated SNPs accounted for 0.4–0.6% of the pheno-
typic variance in SBP, DBP, MAP and PP (Supplementary
Material, Table S10). These estimates are in line with
other association studies in which ,1% of the overall
phenotypic variance was explained by the common variants
identified (6).

Figure 1. Regional association plots of the (A) HRH1 and (B) MDM4 loci are shown with negative log10 (P-value) on the y-axis and chromosomal position on
the x-axis.
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Expression QTL (eQTL) analysis showed that several of our
associated SNPs (or proxy SNPs that were highly correlated
with our lead SNP of interest [r2 . 0.8]) were associated with
the expression levels of nearby genes, as assessed by the micro-
array analysis of RNA expression in various tissues, including
blood, liver, lymph tissues, lymphoblastoid cell lines (LCLs)
and peripheral blood T cells and monocytes, brain, adipose
tissue and liver. These results are summarized in Supplementary
Material, Table S11. Testing for eQTL associations at our novel
loci showed no eQTL associations in the HRH1 region, but we
did observe significant eQTL associations in the MDM4
region. Expression of MDM4 transcripts in lymph tissues,
LCLs and monocytes was associated with rs4951401 (P ¼
1.59 × 1027 in lymph tissue) and rs4245739 (P ¼ 9.9 ×
10211 in LCLs and P ¼ 6.68 × 10212 in monocytes). Both
rs4951401 and rs4245739 are highly correlated with the lead
SNP we identified in our association analyses, rs2169137 in
MDM4 (r2 0.963 and 0.927, respectively). Additional eQTL
associations were identified for rs129128 with the HFE tran-
script (chromosome 6p22, P ¼ 3.03 × 1028), rs3184504 and
rs653178 with SH2B3 and ATXN2 transcripts (12q24, P ¼
3.5 × 1027); rs2470893 with the CSK transcript (15q24, P ¼
4.6 × 1029).

Additionally, we queried the ENCODE database (http://
www.regulomedb.org/). http://www.regulomedb.org/. We
examined the annotations in the region of MDM4 SNPs
(these SNPs include rs4245739, rs4951401, rs2169137).
These SNPs show no new ENCODE regulatory annotations.
We also queried HRH1 (rs347591) which did not have an
eQTL association. This SNP does show overlap via position
weight matrix for the HTF (HER2) transcription factor and
also via DNA footprinting. This is potentially encouraging
but no ChIP-seq data are available for HTF, so this is not ne-
cessarily strongly confirmed. The SNPs which do overlap with
features are those with eQTL associations in HFE (rs129128),
SH2B3 (rs3184504) and CSK (rs2470893).

Pleiotropy evaluations

We tested association of rs347591 (chromosome 3p25, HRH1)
and rs2169137 (chromosome 1q32, MDM4) with traits known
to be associated with hypertension, including coronary artery
disease (CAD), left ventricular hypertrophy (LVH) and stroke.
In these analyses, no additional trait associations with these
SNPs were identified (Supplementary Material, Table S12).

DISCUSSION

Using a genotyping array that covers common genetic vari-
ation in �2100 candidate genes for several cardiovascular
traits including BP, we identified robust associations at 11
known and two novel loci associated with continuous BP
traits. In our primary discovery experiment, we identified 21
loci associated with our traits of interest in an analysis of
61 619 individuals (P , 2.4 × 1026). Through the joint ana-
lysis of SNPs considered relevant during the discovery phase
combined with replication data, in a total of 127 485 indivi-
duals, we identified robust association of 22 SNP-trait associa-
tions at 12 independent loci meeting our significance threshold

of P , 2.4 × 1026. Associations at two of these loci were not
previously known to be associated with BP. The association of
SBP with variants in the HRH1 locus, and the association of
DBP with variants in the MDM4 locus were novel and repli-
cated in silico in an additional 65 866 individuals. Additional-
ly, the SOX6 locus contains a novel SNP-trait association for
SBP with rs2014408; previously an association with MAP
was shown for this locus (19). Finally, one additional region,
chromosome 19p13.2 containing ICAM3, was significant in
our discovery experiment but was not replicated in the joint
analysis of discovery and replication samples. Only one of
the replication cohorts had data available for this SNP (UK,
P ¼ 0.466). Although still meeting the array-wide significance
criterion in the combined analysis, we do not consider this
association to be robust in the replication experiment.

The histamine receptor H1 (HRH1) gene product is
expressed in numerous tissues, such as smooth muscle and
neurons. HRH1 is expressed in the nucleus tractus solitarii,
where it has a role in regulating arterial pressure in rats
(21). Congenic mapping in a rodent model linked HRH1 to
autoimmune T-cell responses and vascular responses regulated
by histamine after Bordetella pertussis toxin sensitization (22),
and this locus appears to have a role in regulating blood brain
barrier permeability (23). In a mouse model of atherosclerosis,
apolipoprotein E-null mice treated with a histamine H1 recep-
tor selective antagonist developed 40% fewer aortic plaques
compared with mice treated with a H2 receptor antagonist
and higher levels of inflammatory markers within the
plaques and higher numbers of inflammatory cells, despite
equivalent plasma lipoprotein levels, suggesting that the H1
receptor enhances low density lipoprotein cholesterol perme-
ability into the intimal space of the artery (24). HRH1 was
selected for the IBC array as a lower priority gene based on
the presence in a Protein ANalysis Through Evolutionary
Relationships (PANTHER) inflammatory/immune response
pathway. The HRH1 gene is located �249 kb from the
ATP2B2 gene with no linkage disequilibrium (LD) detected
in HapMap CEU between common variants in these genes. Al-
though ATP2B2 has not been directly implicated in BP or
hypertension, it is one of the Ca(2+)-ATPases, a family of
plasma membrane pumps encoded by at least three additional
genes: ATP2B1 on chromosome 12q21; ATP2B3 on Xq28 and
ATP2B4 on 1q25. ATP2B1 contains a robust SNP association
for SBP, DBP and hypertension (6). Mice null for Atp2b1 are
embryolethal (25), but recently a mouse with conditional
knockout for the Atp2b1 in vascular smooth muscle cells
was generated and found to have significantly elevated BP
(26). In humans, no associations have been found between var-
iants in the ATP2B2 gene and BP or other vascular traits. Add-
itionally, within the recombination interval containing HRH1
and the peak association signal, SNPs within the ATG7 gene
were associated but well below the statistical significance
threshold for association, decreasing the likelihood that var-
iants in ATG7 are driving the signal in this region.

Mouse double minute 4 homolog (MDM4) encodes a
nuclear protein that is a critical regulator of p53 tumor sup-
pressor protein by binding to this protein and inhibiting its ac-
tivity, promoting cell viability and growth. MDM4 does not
have a described vascular function, but it has a critical role
in regulating p53, a transcription factor which plays an
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important role in regulating target genes that induce cell cycle
arrest, apoptosis and cell senescence (27). MDM4 was also
selected for the IBC array as a lower priority gene, based on
the presence in a PANTHER apoptosis pathway. Mice null
for p53 shows a variety of aging-related phenotypes (28).
MDM2, another regulator of p53, has been shown to have a
functional role in aldosterone-induced vascular remodeling
(29), and MDM2 and MDM4 have been shown to have non-
overlapping but a similar regulation of p53 pathways (30–
32). A genome-wide linkage analysis for loci associated
with PP has shown suggestive linkage on chromosome 1
(BP QTL 77, LOD¼ 2.7) for blacks in the HyperGEN
Network (33), with MDM4 overlapping with this linkage peak.
An overlap with the MDM4 region has also been shown for
10 quantitative trait loci (QTL) related to BP in rats (Human
MDM4: http://rgd.mcw.edu/rgdweb/report/gene/main.html?id=
1319584; Rats MDM4: http://rgd.mcw.edu/rgdweb/search/qtls.
html?term=Mdm4[gene]&speciesType=3). The sex interaction
we observed is of unclear significance since it was not confirmed
in independent samples. MDM4 has also been associated with
measures of cognitive performance in a GWAS (34). Within
the recombination interval containing MDM4, correlated SNPs
in PIK3C2B were associated, so we cannot exclude that the asso-
ciation signal may in part be due to variants in this gene. PIK3C2B
has no known function related to BP or vascular disease.

The association of the SOX6 locus with SBP expands our
prior knowledge of associations in this region with associated
BP traits, with this locus previously reported as associated
with MAP (11). MAP is derived from a calculation incorpor-
ating SBP and therefore these traits are highly correlated. Add-
itionally, we replicated previous reports of 32 SNP-trait
associations with BP, with acknowledgement that some of
the cohorts in the published literature were genotyped on mul-
tiple platforms and have therefore been included in not only
our IBC analysis but also previous reports.

The strengths of this study include the large size (n ¼
61 619) of the discovery meta-analysis with replication in an
additional 65 866 individuals and access to gene expression
data from humans subjects. This meta-analysis has led to the
identification of two novel signals not previously detected by
prior association studies. Another unreported locus was
found in the discovery phase, e.g. ICAM3, which could not
be replicated due to the inadequate sample size in the replica-
tion cohorts with high-quality genotypes for this SNP. The
non-replication may also be explained by GWAS with less
dense coverage used for the replication phase. In addition,
future functional studies are needed to fully comprehend the
underlying mechanisms responsible for the detected associa-
tions. However, we did find that the MDM4 locus was
related to expression of MDM4 transcripts in several tissues,
and the lead SNP identified in our study is in tight LD with
the expression-associated SNPs, suggesting a transcriptional
effect of the associated SNP we identified. Finally, it needs
to be emphasized that the results were generated in European
ancestry populations and that additional studies are needed in
other ethnic groups.

In summary, our study has identified two novel loci contain-
ing the HRH1 and MDM4 genes associated with BP traits of
clinical significance. The identification of these loci expands
our understanding of the genetic determinants of BP.

MATERIALS AND METHODS

Study subjects

The phenotype and genotype data of 61 619 individuals of Euro-
pean ancestry, belonging to 27 participating studies (Supple-
mentary Material, Table S1), were analyzed in the discovery
phase, and additional 65 866 individuals of European ancestry
from 18 additional studies were used in the replication phase.
Individuals of European ancestry, as confirmed by principal
component analysis of genetic ancestry, were analyzed in this
study. All individuals in these studies provided informed
consent, and each study was approved by its own local ethics
committee. More detailed information about each participating
cohort is provided in the Supplementary Material.

Phenotype

BP ascertainment in each study was performed according to the
protocols described in the Supplementary Material. PP was
defined as SBP minus DBP, and MAP was defined as 2/3 DBP
plus 1/3 SBP. In the discovery analyses, each cohort provided
regression models for its data, adjusted for age, age-squared,
body mass index (BMI) and study-specific corrections for popu-
lation substructure (based on principal component analysis). For
individuals taking BP lowering medications, the BP values were
adjusted by adding 15 mmHg to the SBP and 10 mmHg to the
DBP in the discovery and replication cohorts. These adjust-
ments were also implemented prior to the calculation of esti-
mated off-treatment MAP and PP.

Genotyping and quality control

A total of 51 859 SNPs were genotyped and after filtering for
an mismatches .30% with HapMap, removing SNPs without
an rsID in dbSNP129 and SNPs with more than two possible
bases for a single SNP, 48 372 SNPs included in the discovery
meta-analyses, all present in at least one of the three versions
of the Illumina HumanCVD BeadChip (‘Cardiochip’, ITMAT-
Broad_CARe [IBC] array, Illumina San Diego, CA, USA)
(20), which was used by all cohorts participating in the discov-
ery analysis.

For the IBC array, gene and specific SNP information was
assimilated from 2400 published studies systematically ana-
lyzed up until May 2007. An emphasis was placed on the
sample size, data quality and strength of the described associa-
tions. Genes with known or putative association with pheno-
types for sleep, lung and blood diseases were also
nominated. Several pathway-based tools were used to identify
additional biologically plausible candidate genes: Kyoto En-
cyclopedia of Genes and Genomes; PANTHER and BioCarta.
These tools were employed to collate additional genes from
key pathways including lipid metabolism, thrombogenesis,
circulation and gas exchange, insulin resistance, metabolism,
and inflammation, oxidative stress and apoptosis.

Early access was provided to a number of unpublished mouse
atherosclerosis expression QTL (eQTL) datasets. Genes pre-
dicted to be causal for the atherosclerotic lesion size in genetic
crosses of mice with differing susceptibility to atherosclerosis
were identified. Early access was provided to a number of key
findings from a number of CVD-related GWASs.
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Genotypes were called using Beadstudio (Illumina) and the
data were processed using stringent QC filters, as summarized
in Supplementary Material, Tables S2 and S3. Variants with
minor allele frequencies ,1% were excluded from the ana-
lysis. Further details on genotyping methods are provided in
the Supplementary Material, Tables S2 and S3.

QC measures were taken during the various steps of this
work. Individuals with ,90% call rate (completeness) across
all SNPs were removed. SNPs with ,95% call rate (complete-
ness) or SNPs causing heterozygous haploid genotype calls
were removed across all remaining individuals. SNPs with
P , 1 × 1027 for the Hardy–Weinberg Equilibrium test were
also removed. In the NHLBI Candidate Gene Association Re-
source (CARe) samples (35), SNPs associated with chemistry
plate effects were also removed.

Statistical association and meta-analysis

Initial association analyses were calculated within each cohort
for males and females separately, adjusting for age, age-
squared, BMI and study center when appropriate. In each
cohort, except FHS, CFS and Amish, association analysis was
performed using PLINK (36) using linear regression under an
additive genetic model. The family structure was modeled using
a linear mixed effects model implemented in R (37) in FHS
and CFS, and the Mixed Model Analysis for Pedigrees soft-
ware program in the Amish (38).

Meta-analysis was conducted using the summary statistics
contributed by each discovery study, using an inverse variance
weighted, fixed-effects method. At the meta-analysis stage of
analysis, SNPs with frequencies incompatible with HapMap
frequencies were removed (defined as .30% difference in
the allele frequencies). Two analysis groups independently
performed the meta-analysis using different software
packages: METAL (39) and MANTEL (40); both applied a
fixed-effects model weighted by inverse variance. The
results from both the groups were compared and a concord-
ance check was performed as a validation of the results
(data not shown). Genomic control (41) was applied to each
study result and then to the meta-analysis summary data to
control effects possibly due to population stratification or
cryptic relatedness. Quantile–quantile plots are shown for
each trait in Supplementary Material, Fig. S1. Previous
studies using the IBC array have used different significance
thresholds from P , 1 × 1025 to 3 × 1026 [(42) and (43), re-
spectively]. The CARe IBC array studies (35), which are
included in this meta-analysis, determined that after account-
ing for LD, the effective number of independent tests was
�20 500 for Europeans producing an experimental or ‘array-
wide’ statistical threshold of P ¼ 2.4 × 1026, respectively, to
maintain an false-positive rate of 5% (44) and thus, we have
adopted these thresholds for this study. Since we have ana-
lyzed four traits, although highly correlated, we examined
the effect of further Bonferroni correction for four tests. For
each associated locus, the LD patterns were examined and in-
dependence between the loci identified in this study was veri-
fied using SNAP (45) (r2 , 0.3).

For loci with multiple SNPs showing association with the
traits, we also conducted conditional analyses to evaluate inde-
pendent signals. At each locus with variants associated with

BP traits, we added the most significant SNP within the
locus as a covariate in the association tests in each cohort in
the NHLBI CARe consortium. Then, we performed meta-
analysis of cohort-specific conditional analysis results. This
conditional analysis was performed for the SNPs within a
500 kb region around the most significant SNP. The P-values
for SNP association testing were then recorded, respectively,
for associated locus for each trait.

Replication analysis

Independent SNPs with P , 1.0 × 1025 in the discovery analysis
were carried forward for replication analysis using independent
samples for each trait. The significance threshold for association
in the replication phase was a Bonferroni-corrected P-value based
on an a ¼ 0.05 and the final number of independent (r2 , 0.3)
SNPs tested, and we also combined the discovery and replication
data in a meta-analysis, in which evidence of positive replication
was defined by P , 2.4 × 1026 in the meta-analysis of combined
discovery and replication samples. Associated loci were tested for
replication by carrying forward to replication testing the lead SNP
(minimum P-value) at each locus.

Interaction testing

For the lead SNP identified in novel genes, we tested for inter-
actions with sex by first calculating the residual after adjusting
for age, age-squared, BMI, sex and 10 principle components,
and then performed sex-specific linear regression on a SNP
for each cohort separately. This analysis was done using the
PLINK G × E function. The sex-specific estimates were
further combined by meta-analysis for men and women separ-
ately, using METAL (39). The interaction between gene and
sex was tested by comparing the regression coefficients in
men and women. That is, we calculated a T statistic:
T = (b̂M − b̂F)/

���������
ŝ2

M + ŝ2
F

√
, where b̂M, ŝ2

M, b̂F and ŝ2
F are the

estimated regression coefficients and their standard errors
from male and female meta-analysis, respectively. T follows
the standard normal distribution.

Variance explained

The proportion of the trait variance explained by the discov-
ered associations was calculated by first obtaining the resi-
duals after adjusting for age, age-squared, BMI and 10 PCs
and then performing linear regression on all 21 identified asso-
ciated variants together in a subset of the cohorts comprising
the NHLBI CARe consortium cohorts (ARIC, CHS, MESA,
CARDIA, CFS). The variance explained was calculated by a
standard analysis of variance.

Annotation

eQTL analysis
We identified alias rsIDs for significant index SNPs using SNAP
(45). Further proxy SNPs in high LD (r2 ¼ 1.0) were identified
with SNAP using multiple HapMap CEU builds. Current and
alias rsIDs were searched for primary SNPs and LD proxies
against a collected database of expression SNP (eSNP) results
including the following tissues: fresh lymphocytes (46), fresh
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leukocytes (47), leukocyte samples in individuals with celiac
disease (48)), LCLs derived from asthmatic children (49),
HapMap LCL from three populations (50), a separate study on
HapMap CEU LCL (51), peripheral blood monocytes (52,53),
omental and subcutaneous adipose (54,55), stomach (55) and
whole blood samples (54,56), endometrial carcinomas (57),
brain cortex (52,58), three large studies of brain regions includ-
ing prefrontal cortex, visual cortex and cerebellum, respectively
(Emilsson, personal communication), liver (55,59,60), osteo-
blasts (61), skin (62) and additional fibroblast, T-cell and LCL
sample datasets (63). The collected eSNP results met the criteria
for statistical thresholds for association with gene transcript
levels as described in the original papers. In each case, where
an index or proxy SNP was associated with a transcript, we
further examined the strongest eSNP for that transcript within
that dataset (best eSNP), and the LD between the best eSNP
and BP-selected eSNPs to assess the concordance of the BP as-
sociation and expression signals. Annotation of SNPs in the
region was done with the SNAP web-based tool (45).

Evaluation of pleiotropy of BP variants with
cardiovascular disease

We evaluated the effect of the novel loci identified in our
study with traits known to be related to elevated hypertension
including CAD, LVH and stroke. The definitions of the CAD,
LVH and stroke phenotypes and association tests were carried
out as described in the Supplementary Material. Evidence of
association for the additional traits was alpha of 0.05 adjusted
by the two SNPs tested for association (P ¼ 0.025).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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