29 research outputs found
Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache
Background: Nearly a fifth of the world's population suffer from migraine headache, yet risk factors for this disease are poorly characterized. Methods: To further elucidate these factors, we conducted a genetic correlation analysis using cross-trait linkage disequilibrium (LD) score regression between migraine headache and 47 traits from the UK Biobank. We then tested for possible causality between these phenotypes and migraine, using Mendelian randomization. In addition, we attempted replication of our findings in an independent genome-wide association study (GWAS) when available. Results: We report multiple phenotypes with genetic correlation (P < 1.06 × 10-3) with migraine, including heart disease, type 2 diabetes, lipid levels, blood pressure, autoimmune and psychiatric phenotypes. In particular, we find evidence that blood pressure directly contributes to migraine and explains a previously suggested causal relationship between calcium and migraine. Conclusions: This is the largest genetic correlation analysis of migraine headache to date, both in terms of migraine GWAS sample size and the number of phenotypes tested. We find that migraine has a shared genetic basis with a large number of traits, indicating pervasive pleiotropy at migraine-associated loci.Peer reviewe
Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families
Complex traits, including migraine, often aggregate in families, but the underlying genetic architecture behind this is not well understood. The aggregation could be explained by rare, penetrant variants that segregate according to Mendelian inheritance or by the sufficient polygenic accumulation of common variants, each with an individually small effect, or a combination of the two hypotheses. In 8,319 individuals across 1,589 migraine families, we calculated migraine polygenic risk scores (PRS) and found a significantly higher common variant burden in familial cases (n = 5,317, OR = 1.76, 95% CI = 1.71-1.81, p = 1.7 × 10-109) compared to population cases from the FINRISK cohort (n = 1,101, OR = 1.32, 95% CI = 1.25-1.38, p = 7.2 × 10-17). The PRS explained 1.6% of the phenotypic variance in the population cases and 3.5% in the familial cases (including 2.9% for migraine without aura, 5.5% for migraine with typical aura, and 8.2% for hemiplegic migraine). The results demonstrate a significant contribution of common polygenic variation to the familial aggregation of migraine
The contribution of CACNA1A, ATP1A2 and SCN1A mutations in hemiplegic migraine : A clinical and genetic study in Finnish migraine families
Objective To study the position of hemiplegic migraine in the clinical spectrum of migraine with aura and to reveal the importance of CACNA1A, ATP1A2 and SCN1A in the development of hemiplegic migraine in Finnish migraine families. Methods The International Classification of Headache Disorders 3rd edition criteria were used to determine clinical characteristics and occurrence of hemiplegic migraine, based on detailed questionnaires, in a Finnish migraine family collection consisting of 9087 subjects. Involvement of CACNA1A, ATP1A2 and SCN1A was studied using whole exome sequencing data from 293 patients with hemiplegic migraine. Results Overall, hemiplegic migraine patients reported clinically more severe headache and aura episodes than non-hemiplegic migraine with aura patients. We identified two mutations, c.1816G>A (p.Ala606Thr) and c.1148G>A (p.Arg383His), in ATP1A2 and one mutation, c.1994C>T (p.Thr665Met) in CACNA1A. Conclusions The results highlight hemiplegic migraine as a clinically and genetically heterogeneous disease. Hemiplegic migraine patients do not form a clearly separate group with distinct symptoms, but rather have an extreme phenotype in the migraine with aura continuum. We have shown that mutations in CACNA1A, ATP1A2 and SCN1A are not the major cause of the disease in Finnish hemiplegic migraine patients, suggesting that there are additional genetic factors contributing to the phenotype.Peer reviewe
Cerebral small vessel disease genomics and its implications across the lifespan
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine
Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies
Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study
Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain
Habitual sleep disturbances and migraine : a Mendelian randomization study
Ville Artto työryhmän jäsenenäObjective Sleep disturbances are associated with increased risk of migraine, however the extent of shared underlying biology and the direction of causal relationships between these traits is unclear. Delineating causality between sleep patterns and migraine may offer new pathophysiologic insights and inform subsequent intervention studies. Here, we used genetic approaches to test for shared genetic influences between sleep patterns and migraine, and to test whether habitual sleep patterns may be causal risk factors for migraine and vice versa. Methods To quantify genetic overlap, we performed genome-wide genetic correlation analyses using genome-wide association studies of nine sleep traits in the UK Biobank (n >= 237,627), and migraine from the International Headache Genetics Consortium (59,674 cases and 316,078 controls). We then tested for potential causal effects between sleep traits and migraine using bidirectional, two-sample Mendelian randomization. Results Seven sleep traits demonstrated genetic overlap with migraine, including insomnia symptoms (rg = 0.29, P <10(-31)) and difficulty awakening (rg = 0.11, P <10(-4)). Mendelian randomization analyses provided evidence for potential causal effects of difficulty awakening on risk of migraine (OR [95% CI] = 1.37 [1.12-1.68], P = 0.002), and nominal evidence that liability to insomnia symptoms increased the risk of migraine (1.09 [1.02-1.16], P = 0.02). In contrast, there was minimal evidence for an effect of migraine liability on sleep patterns or disturbances. Interpretation These data support a shared genetic basis between several sleep traits and migraine, and support potential causal effects of difficulty awakening and insomnia symptoms on migraine risk. Treatment of sleep disturbances may therefore be a promising clinical intervention in the management of migraine.Peer reviewe
A genome-wide cross-phenotype meta-analysis of the association of blood pressure with migraine
Ville Artto, Mikko Kallela, Markus Färkkilä IHGC:n jäseninäBlood pressure (BP) was inconsistently associated with migraine and the mechanisms of BP-lowering medications in migraine prophylaxis are unknown. Leveraging large-scale summary statistics for migraine (N-cases/N-controls = 59,674/316,078) and BP (N = 757,601), we find positive genetic correlations of migraine with diastolic BP (DBP, r(g) = 0.11, P = 3.56 x 10(-06)) and systolic BP (SBP, r(g) = 0.06, P = 0.01), but not pulse pressure (PP, r(g) = -0.01, P = 0.75). Cross-trait meta-analysis reveals 14 shared loci (PPeer reviewe
Supplementary table 2 -Supplemental material for The contribution of <i>CACNA1A, ATP1A2</i> and <i>SCN1A</i> mutations in hemiplegic migraine: A clinical and genetic study in Finnish migraine families
<p>Supplemental material, Supplementary table 2 for The contribution of <i>CACNA1A, ATP1A2</i> and <i>SCN1A</i> mutations in hemiplegic migraine: A clinical and genetic study in Finnish migraine families by Marjo Eveliina Hiekkala, Pietari Vuola, Ville Artto, Paavo Häppölä, Elisa Häppölä, Salli Vepsäläinen, Ester Cuenca-León, Dennis Lal, Padhraig Gormley, Eija Hämäläinen, Matti Ilmavirta, Markku Nissilä, Erkki Säkö, Marja-Liisa Sumelahti, Hanna Harno, Hannele Havanka, Petra Keski-Säntti, Markus Färkkilä, Aarno Palotie, Maija Wessman, Mari Anneli Kaunisto and Mikko Kallela in Cephalalgia</p