123 research outputs found

    Reticulon1-C modulates protein disulphide isomerase function

    Get PDF
    Endoplasmic reticulum (ER) is the primary site for the synthesis and folding of secreted and membrane-bound proteins. Accumulation of unfolded and misfolded proteins in ER underlies a wide range of human neurodegenerative disorders. Hence, molecules regulating the ER stress response represent potential candidates as drug targets for tackling these diseases. Protein disulphide isomerase (PDI) is a chaperone involved in ER stress pathway, its activity being an important cellular defense against protein misfolding. Here, we demonstrate that human neuroblastoma SH-SY5Y cells overexpressing the reticulon protein 1-C (RTN1-C) reticulon family member show a PDI punctuate subcellular distribution identified as ER vesicles. This represents an event associated with a significant increase of PDI enzymatic activity. We provide evidence that the modulation of PDI localization and activity does not only rely upon ER stress induction or upregulation of its synthesis, but tightly correlates to an alteration in its nitrosylation status. By using different RTN1-C mutants, we demonstrate that the observed effects depend on RTN1-C N-terminal region and on the integrity of the microtubule network. Overall, our results indicate that RTN1-C induces PDI redistribution in ER vesicles, and concomitantly modulates its activity by decreasing the levels of its S-nitrosylated form. Thus RTN1-C represents a promising candidate to modulate PDI function

    Neuropathology and Inflammatory Cell Characterization in 10 Autoptic COVID-19 Brains

    Get PDF
    COVID-19 presents with a wide range of clinical neurological manifestations. It has been recognized that SARS-CoV-2 infection affects both the central and peripheral nervous system, leading to smell and taste disturbances; acute ischemic and hemorrhagic cerebrovascular disease; encephalopathies and seizures; and causes most surviving patients to have long lasting neurological symptoms. Despite this, typical neuropathological features associated with the infection have still not been identified. Studies of post-mortem examinations of the cerebral cortex are obtained with difficulty due to laboratory safety concerns. In addition, they represent cases with different neurological symptoms, age or comorbidities, thus a larger number of brain autoptic data from multiple institutions would be crucial. Histopathological findings described here are aimed to increase the current knowledge on neuropathology of COVID-19 patients. We report post-mortem neuropathological findings of ten COVID-19 patients. A wide range of neuropathological lesions were seen. The cerebral cortex of all patients showed vascular changes, hyperemia of the meninges and perivascular inflammation in the cerebral parenchyma with hypoxic neuronal injury. Perivascular lymphocytic inflammation of predominantly CD8-positive T cells mixed with CD68-positive macrophages, targeting the disrupted vascular wall in the cerebral cortex, cerebellum and pons were seen. Our findings support recent reports highlighting a role of microvascular injury in COVID-19 neurological manifestations

    High levels of trim5a are associated with xenophagy in hiv‐1‐infected long‐term nonprogressors

    Get PDF
    Autophagy is a lysosomal‐dependent degradative mechanism essential in maintaining cellular homeostasis, but it is also considered an ancient form of innate eukaryotic fighting against invading microorganisms. Mounting evidence has shown that HIV‐1 is a critical target of autoph-agy that plays a role in HIV‐1 replication and disease progression. In a special subset of HIV‐1‐infected patients that spontaneously and durably maintain extremely low viral replication, namely, long‐term nonprogressors (LTNP), the resistance to HIV‐1‐induced pathogenesis is ac-companied, in vivo, by a significant increase in the autophagic activity in peripheral blood mon-onuclear cells. Recently, a new player in the battle of autophagy against HIV‐1 has been identified, namely, tripartite motif protein 5α (TRIM5α). In vitro data demonstrated that TRIM5α directly recognizes HIV‐1 and targets it for autophagic destruction, thus protecting cells against HIV‐1 in-fection. In this paper, we analyzed the involvement of this factor in the control of HIV‐1 infection through autophagy, in vivo, in LTNP. The results obtained showed significantly higher levels of TRIM5α expression in cells from LTNP with respect to HIV‐1‐infected normal progressor patients. Interestingly, the colocalization of TRIM5α and HIV‐1 proteins in autophagic vacuoles in LTNP cells suggested the participation of TRIM5α in the autophagy containment of HIV‐1 in LTNP. Al-together, our results point to a protective role of TRIM5α in the successful control of the chronic viral infection in HIV‐1‐controllers through the autophagy mechanism. In our opinion, these findings could be relevant in fighting against HIV‐1 disease, because autophagy inducers might be employed in combination with antiretroviral drugs

    AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1

    Get PDF
    Damaged mitochondria are eliminated by mitophagy, a selective form of autophagy whose dysfunction associates with neurodegenerative diseases. PINK1, PARKIN and p62/SQTMS1 have been shown to regulate mitophagy, leaving hitherto ill-defined the contribution by key players in 'general' autophagy. In basal conditions, a pool of AMBRA1 - an upstream autophagy regulator and a PARKIN interactor - is present at the mitochondria, where its pro-autophagic activity is inhibited by Bcl-2. Here we show that, upon mitophagy induction, AMBRA1 binds the autophagosome adapter LC3 through a LIR (LC3 interacting region) motif, this interaction being crucial for regulating both canonical PARKIN-dependent and -independent mitochondrial clearance. Moreover, forcing AMBRA1 localization to the outer mitochondrial membrane unleashes a massive PARKIN- and p62-independent but LC3-dependent mitophagy. These results highlight a novel role for AMBRA1 as a powerful mitophagy regulator, through both canonical or noncanonical pathways

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The health determinants in young children: Testing a new surveillance system in Italy

    Get PDF
    In recent years, the scientific community has stressed the need to invest in the first 1,000 days of life - the time spanning between conception and the 2nd birthday - because it is during this period that the foundations of health are laid and whose effects will be present throughout the life and may influence the next generation. Taking this into account, in 2013 the National Centre for Disease Prevention and Control (CCM) of the Italian Ministry of Health promoted and financed a project to test a surveillance system of the main determinants of health concerning the child between the conception period and the 2nd years of life which are included in the National Programme “GenitoriPiù”: folic acid before and during pregnancy, abstention from tobacco and alcohol during pregnancy and lactation, breastfeeding, infant sleep position, vaccination attitude, and early reading. The Project, started in January 2014 and ended in August 2016, has piloted the design, testing, and evaluation of the surveillance system with the view to national extension and the repeatability over time. The surveillance system has been designed to collect data through a questionnaire compiled by mothers in vaccination centres, in order to produce indicators which will enable territorial and intertempo-ral comparisons to be made. The project has shown the feasibility of this system, identifying favourable conditions and possible difficulties, and its ability to collect important information on children's health
    corecore