18 research outputs found

    Parenting from the Margins

    Get PDF
    The idea of mothering (or parenting for the sake of being inclusive) from the margins is derived from the understanding that the experiences of women are not monolithic. Motherhood and parenting can be a source for activism and change both by challenging societal norms of who can successfully raise children, and by educating and empowering children to rethink current structures dictating family norms

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Expression of the p53 Tumor Suppressor Gene Is Up-Regulated by Depletion of Intracellular Zinc in HepG2 Cells

    No full text
    Expression and activation of the p53 tumor suppressor protein are modulated by various cellular stimuli. The objective of this work was to examine the influence of zinc depletion on the expression of p53 in HepG2 cells. Two different low Zn (ZD) media, Zn-free Opti-MEM and a ZD medium containing Chelex-100 treated serum, were used to deplete cellular zinc over one passage. Cellular zinc levels of ZD cells were significantly lower than in their controls in both the Opti-MEM and Chelex studies. p53 mRNA abundance was 187% higher in ZD Opti-MEM cells and Ͼ100% higher in ZD Chelex cells compared with their respective controls. To examine whether the effects were specific to zinc depletion, a third, zinc-replenished group (ZDA) was included in the Opti-MEM study in which cells were cultured in ZD media for nearly one passage before a change was made to zinc-adequate (ZA) medium for the last 24 h. Zinc levels in the ZDA cells were significantly higher than in ZD cells, and p53 mRNA abundance was normalized to control levels. Nuclear p53 protein levels were Ͼ100% higher in the ZD Opti-MEM cells than in ZA cells. Interestingly, the ZDA Opti-MEM cells had significantly lower levels of nuclear p53 protein than both the ZA and ZD cells. These data suggest that expression of p53, a critical component in the maintenance of genomic stability, may be affected by reductions in cellular zinc. J. Nutr. 130: 1688 –1694, 2000

    Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression

    Get PDF
    Panic disorder (PD) has a lifetime prevalence of 2-4% and heritability estimates of 40%. The contributory genetic variants remain largely unknown, with few and inconsistent loci having been reported. The present report describes the largest genome-wide association study (GWAS) of PD to date comprising genome-wide genotype data of 2248 clinically well-characterized PD patients and 7992 ethnically matched controls. The samples originated from four European countries (Denmark, Estonia, Germany, and Sweden). Standard GWAS quality control procedures were conducted on each individual dataset, and imputation was performed using the 1000 Genomes Project reference panel. A meta-analysis was then performed using the Ricopili pipeline. No genome-wide significant locus was identified. Leave-one-out analyses generated highly significant polygenic risk scores (PRS) (explained variance of up to 2.6%). Linkage disequilibrium (LD) score regression analysis of the GWAS data showed that the estimated heritability for PD was 28.0-34.2%. After correction for multiple testing, a significant genetic correlation was found between PD and major depressive disorder, depressive symptoms, and neuroticism. A total of 255 single-nucleotide polymorphisms (SNPs) with p < 1 x 10(-4) were followed up in an independent sample of 2408 PD patients and 228,470 controls from Denmark, Iceland and the Netherlands. In the combined analysis, SNP rs144783209 showed the strongest association with PD (pcomb = 3.10 x 10(-7)). Sign tests revealed a significant enrichment of SNPs with a discovery p-value of <0.0001 in the combined follow up cohort (p = 0.048). The present integrative analysis represents a major step towards the elucidation of the genetic susceptibility to PD

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.</p

    Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants

    No full text
    Antimicrobials and antivirals are widely used in young infants and neonates. These patients have historically been largely excluded from clinical trials and, as a consequence, the pharmacokinetics and pharmacodynamics of commonly used antibacterials, antifungals, and antivirals are incompletely understood in this population. This review summarizes the current literature specific to neonates and infants regarding pharmacokinetic parameters and changes in neonatal development that affect antimicrobial and antiviral pharmacodynamics. Specific drug classes addressed include aminoglycosides, aminopenicillins, cephalosporins, glycopeptides, azole antifungals, echinocandins, polyenes, and guanosine analogs. Within each drug class, the pharmacodynamics, pharmacokinetics, and clinical implications and future directions for prototypical agents are discussed. β-Lactam antibacterial activity is maximized when the plasma concentration exceeds the minimum inhibitory concentration for a prolonged period, suggesting that more frequent dosing may optimize β-lactam therapy. Aminoglycosides are typically administered at longer intervals with larger doses in order to maximize exposure (i.e., area under the plasma concentration–time curve) with gestational age and weight strongly influencing the pharmacokinetic profile. Nonetheless, safety concerns necessitate therapeutic drug monitoring across the entire neonatal and young infant spectrum. Vancomycin, representing the glycopeptide class of antibacterials, has a long history of clinical utility, yet there is still uncertainty about the optimal pharmacodynamic index in neonates and young infants. The high degree of pharmacokinetic variability in this population makes therapeutic drug monitoring essential to ensure adequate therapeutic exposure. Among neonates treated with the triazole agent fluconazole, it has been speculated that loading doses may improve pharmacodynamic target attainment rates. The use of voriconazole necessitates therapeutic drug monitoring and dose adjustments for patients with hepatic dysfunction. Neonates treated with lipid-based formulations of the polyene amphotericin B may be at an increased risk of death, such that alternative antifungal agents should be considered for neonates with invasive fungal infections. Alternative antifungal agents such as micafungin and caspofungin also exhibit unique pharmacokinetic considerations in this population. Neonates rapidly eliminate micafungin and require nearly three times the normal adult dose to achieve comparable levels of systemic exposure. Conversely, peak caspofungin concentrations have been reported to be similar among neonates and adults. However, both of these drugs feature favorable safety profiles. Recent studies with acyclovir have suggested that current dosing regimens may not result in therapeutic central nervous system concentrations and more frequent dosing may be required for neonates at later postmenstrual ages. Though ganciclovir and valganciclovir demonstrate excellent activity against cytomegalovirus, they are associated with significant neutropenia. In summary, many pharmacokinetic and pharmacodynamic studies have been conducted in this vulnerable population; however, there are also substantial gaps in our knowledge that require further investigation. These studies will be invaluable in determining optimal neonatal dosing regimens that have the potential to improve clinical outcomes and decrease adverse effects associated with antimicrobial and antiviral treatments
    corecore