99 research outputs found

    Human response to vibration in residential environments (NANR209), technical report 4: calculation of noise exposure

    Get PDF
    Although vibration is the primary focus of the “Human response to vibration in residential environments” project, it can be seen in the literature that noise, which covariates very well with vibration, can facilitate annoyance. Work was done towards analysis of vibration exposure and noise exposure separately, as was analysis of the combined effect from both. In the report Human response to vibration in residential environments, an analysis of combined effects from noise and vibration is performed.The objectives of this technical report were to obtain internal and external exposure to noise in residential environments for three separate sources; railway traffic, construction work and internal sources. As such, exposures were obtained in two steps. In the phase one, external measurements and estimation were performed in the absence of internal measurements. In the phase two, exposures over 24h were calculated for railway traffic. Additionally, owing to the nature of construction occurring during the daytime period, only daytime (rather than 24h) exposure from those sources was calculated.Exposure to noise from railway traffic was obtained from calculation of Lden based on the Calculation of Railway Noise guidelines (Department of Transport, 1995). This noise descriptor was used for the assessment of railway noise as residents are exposed over a 24h period. On the other hand, for a determination of exposure to noise from construction activities a noise descriptor such as LAeq,0700-1900 seems to be adequate as only daytime activities were observed and recorded during measurements. Details of determining the exposures are explained further in this report.Calculation was performed for all residents for whom vibration exposure was measured. Predictive procedures were chosen due to the absence of a significant number of external measurements. This is a well known standardised routine, although it requires many details regarding train type, the number of vehicles that a train is composed of and noise emission from a particular vehicle. All details about trains were obtained from sources below:• Control positions used for the monitoring of vibration from railway traffic for 24h• Timetables obtained from the National Rail Enquiries website• Freightmaster - a guide to rail-borne freight services in the country (Freightmaster, 2011)• Two Line Speed Profile reports from 2005 and 2009 (Goffey, 2005; Moor, 2009)Exposure from construction work was calculated from measurements. Some activities were unable to be captured successfully. Such problems were encountered mostly due to anninability to anticipate the schedule of construction work as well as frequent changes to any pre-existing schedule. Consequently, an estimation of these construction activities was provided instead.A significant number of limitations was encountered during internal measurements of noise from railway sources. As explained in detail in Section 3.2, the primary noise source of interest was often easily masked by extraneous internal sources. Consequently, poor results of many events or no events were obtained at all. External measurements however yielded clear, comprehensive and distinct events, identifiable over background noise.Secondly, a number of problems during measurements of construction sources were encountered. One of the main problems relates to the very strong influence of background noise. As a result, noise measurement was significantly contaminated, particularly by road traffic. Activities such as saw-cutting, excavation, flattening, etc. that occurred in the East Manchester site have greater uncertainties associated with obtained results. On the other hand, the South of Manchester site was situated at an increased distance from road traffic and thus fewer uncertainties were expected for the construction activities identified.Another problem, addressed above for rail noise, is that encountered when performing internal measurements. As such, only external measurements were performed. However, an internal exposure was estimated from an external exposure. There is a good correlation between external and internal exposure

    Consumption of Bt Maize Pollen Expressing Cry1Ab or Cry3Bb1 Does Not Harm Adult Green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae)

    Get PDF
    Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea

    Identification and Characterization of NF-Y Transcription Factor Families in the Monocot Model Plant Brachypodium distachyon

    Get PDF
    BACKGROUND: Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium) with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. METHODOLOGY/PRINCIPAL FINDINGS: We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y). By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. CONCLUSIONS/SIGNIFICANCE: The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses

    Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.

    Get PDF
    BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme

    A century of trends in adult human height

    Get PDF

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories
    corecore