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Abstract

Background: The expression of fluorescent protein (FP) genes as real-time visual markers, both transiently and
stably, has revolutionized plant biotechnology. A palette of colors of FPs is now available for use, but the diversity
has generally been underutilized in plant biotechnology. Because of the green and far-red autofluorescent
properties of many plant tissues and the FPs themselves, red and orange FPs (RFPs, and OFPs, respectfully) appear
to be the colors with maximum utility in plant biotechnology. Within the color palette OFPs have emerged as the
brightest FP markers in the visible spectra. This study compares several native, near-native and modified OFPs for
their “brightness” and fluorescence, therefore, their usability as marker genes in transgenic plant tissues.

Results: The OFPs DsRed2, tdTomato, mOrange and pporRFP were all expressed under the control of the CaMV 35S
promoter in agroinfiltration-mediated transient assays in Nicotiana benthamiana. Each of these, as well as
endoplasmic reticulum (ER)-targeted versions, were stably expressed in transgenic Nicotiana tabacum and
Arabidopsis thaliana. Congruent results were observed between transient and stable assays. Our results
demonstrated that there are several adequate OFP genes available for plant transformation, including the new
pporRFP, an unaltered tetramer from the hard coral Porites porites. When the tandem dimer tdTomato and the
monomeric mOrange were targeted to the ER, dramatic, ca. 3-fold, increase in plant fluorescence was observed.

Conclusions: From our empirical data, and a search of the literature, it appears that tdTomato-ER and mOrange-ER
are the two highest fluorescing FPs available as reporters for transgenic plants. The pporRFP is a brightly fluorescing
tetramer, but all tetramer FPs are far less bright than the ER-targeted monomers we report here.

Keywords: Endoplasmic reticulum targeting, Fluorescent proteins, GFP, Marker genes, OFP, Orange fluorescent
protein, Reporter genes, RFP, Subcellular localization, Transgenic plants, Visual markers
Background
Since the discovery and isolation of the green fluorescent
protein (GFP) from the Pacific jellyfish Aequorea
victoria, fluorescent proteins (FPs) have become an in-
creasingly powerful tool for use in molecular biology
[1-3]. The lack of a required substrate or co-factor along
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with the visible fluorescence that is emitted upon excita-
tion of the fluorophore make FPs desirable tools and
reporters for a wide variety of biological applications.
Recent advances in imaging methods have also enhanced
the applications of FPs in plant biology [4]. In plant gene
expression studies, the genes for FPs are often overex-
pressed alone or fused directly to other genes of interest
to monitor spatial expression patterns, and entire vector
sets have been constructed for the ease of this applica-
tion [5,6]. Additionally, FPs have been used as tracking
agents to detect and improve the efficiency of transient
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expression and stable plant transformation systems. In
this case, FPs are typically under the transcriptional
regulation of highly constitutive promoters such as
maize ubiquitin 1 promoter (ZmUbi1) or cauliflower
mosaic virus (CaMV) 35S promoter [7,8]. While whole
cell or whole organism expression of FPs are common,
fluorescent reporter genes have also been cloned under
the control of tissue-specific promoters for discrete ex-
pression in transgenic plants, including in pollen [9,10],
endosperm and aleurone cells [11-13], roots [14,15] and
vascular tissues [16,17]. FPs are useful to characterize in-
ducible promoters [18] and can also be fused directly to
sequence peptide tags at the N- or C-terminus of a gene
sequence and targeted intracellularly to specific
studies [19].
Although other FPs have been added to the color pal-

ette during the past 12 years, GFP has remained the
most commonly used FP in these studies; GFPs generally
form monomers in physiologically-relevant concentra-
tions overexpressed in the cytosol, whereas native coral-
derived FPs (yellow through far red) tend to autotetra-
merize. Nevertheless coral-derived FPs have gained
wider use in recent years in transgenic plant studies sim-
ply because many of them are brighter, owing partially
to their longer wavelengths. The longer wavelengths
needed to excite RFPs also have much lower levels of
autofluorescence in mature green tissue as compared to
UV or blue light, which is used to visualize GFP [1]. The
greatest source of autofluorescence interference is
chlorophyll autofluorescence (flue light excitation) in
green tissues, which can obscure GFP fluorescence.
DsRed, derived from coral Discosoma sp. was the first

coral-derived FP to be used in plants as a reporter gene
[20,21], and remains the most widely-used FP in biology
after GFP. Systematic mutations have since been intro-
duced into DsRed to improve its folding dynamics,
solubilization, photostability and to render monomeriza-
tion, and more recent mutations and improvements in
DsRed have yielded derivative FPs with increased fluor-
escence intensity or brightness (e.g. increased extinction
coefficient, quantum yield) and altered spectral proper-
ties (e.g. shifted excitation and emission wavelengths) for
reporter gene applications [2]. These include mRFP1
[22] along with tdTomato, mStrawberry, and, mOrange
[2,23]. Furthermore, additional sources of coral- and
other organism-derived FPs beyond Discosoma sp. are
constantly being discovered and have recently been
exploited to produce novel FPs, potentially resulting in
improved FP reporter genes for plant biotechnology
[24]. Another gene in the toolbox is mEosFP, which has
recently been used in plants in various organelle-
targeted versions [25]. EosFP is a green-to-red (actually
orange) photoconvertable FP that fluoresces green when
by blue light. When excited by 390 nm-405 nm light for
a few seconds will convert to orange emission (581 nm
maximum).
The aim of this study was to survey a sample of promis-

ing FPs that have seldom been used in plants to compare
their performance as reporter genes. We also set out to
improve them for use in applications where whole-plant
fluorescence is of paramount importance (e.g., detecting
inducible expression). We evaluated and modified the fol-
lowing FPs (maximal excitation and emission wavelengths
in nm): DsRed2 (563, 582), tdTomato (554, 581) mOrange
(548, 562) and pporRFP (578, 595). Whereas many of
these proteins are often called red fluorescent proteins
(RFPs), as Shaner et al. [3] rightly point out, their emis-
sions are all orange. Therefore we will refer to these pro-
teins as orange fluorescent proteins (OFPs). The
extinction coefficients and quantum yields of these OFPs
indicated that each should be useful as markers in plants,
but all started with less brightness than tdTomato:
DsRed2 (38% as bright), mOrange (52% as bright), and
pporRFP (56% as bright). Since we are especially inter-
ested in their use as transgenic markers, and not as fusion
protein candidates, tetramerization was not deemed to be
a negative factor. However, we did use some monomeric
protein-coding variants chosen because of their bright-
ness. We compared non-targeted and endoplasmic
reticulum- (ER-) targeted variants under the control of a
constitutive promoter in identical DNA vector backbones.
Transient expression in Nicotiana benthamiana using
agroinfiltration and stable transgenic Arabidopsis thaliana
and tobacco (Nicotiana tabacum) plants were assayed
using epifluorescence and confocal microscopy, and spec-
trofluorescence measurements.

Results and discussion
Agroinfiltration-mediated transient expression of OFPs
The agroinfiltration experiment in Nicotiana benthami-
ana was designed to rapidly screen the expression vec-
tors for functionality, but to also assay gross comparisons
of the effect of ER-targeting, e.g., adding a signal peptide
fusion to the N-terminus and an HDEL ER retention sig-
nal to the C-terminus that successfully improved whole
plant fluorescence for GFP [26]. We were initially per-
plexed that the apparent fluorescence varied among
OFPs, instead of increasing the fluorescence in all the
four different OFP genes. Notable fluorescence increase
from ER-targeting was observed only for the non-
tetramers: tdTomato (tandem-dimer Tomato), which es-
sentially forms a monomer OFP, and the monomeric
variant, mOrange (Figure 1). The tdTomato is a head-to-
tail dTomato variant with a 16 amino acid linker, and
therefore contains two chromophores, which explains
why it is approximately twice as bright as the other OFPs
[3,18]. With a large Stokes shift of 27 nm, tdTomato is
also practically easier to visualize and measure compared
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Figure 1 Representative confocal microscopy images showing a comparison of fluorescence in tobacco leaves following
agroinfiltration with A. tumefaciens strain GV3850 containing constructs expressing DsRed2, DsRed2-ER, tdTomato, tdTomato-ER,
pporRFP, pporRFPmut-ER, mOrange, mOrange-ER and empty vector controls. Images were taken using scanning confocal microscopy at 48
hours after agroinfiltration. Scale bar represents 50 μm.

Mann et al. BMC Biotechnology 2012, 12:17 Page 3 of 10
http://www.biomedcentral.com/1472-6750/12/17
with the other OFPs tested with lower Stokes shifts (be-
tween 14 nm and 19 nm). We hypothesize that the addi-
tions to the N- and, especially the C- termini altered the
homotetramerization of DsRed-2 and pporRFP, which
could have affected both their accumulation and ultim-
ately their fluorescence. The agroinfiltration data also
appeared to be congruent with the spectrofluorometric
data of the stable transformants described below.

Stable expression of unaltered OFP genes in tobacco
Whereas agroinfiltration is useful as a first-pass gross
screen for cassette functionality, stable transformation
more closely mimics the range of expression levels seen
when gene constructs are integrated in variable insertion
sites. Stable expression was required in order to quantita-
tively compare the expression levels of the different
fluorescent protein encoding genes in similar tissues.
Transformants (up to 10 events) of the most fluorescent
T1 transgenic tobacco (Nicotiana tabacum cv. Xanthi)
lines were selected for analysis and, therefore, micros-
copy and fluorospectroscopy analysis of these lines yield
a realistic variation with regards to the range of fluores-
cence in these eudicot species. There was a wide range of
fluorescent intensity for the different transgenic lines for
each OFP construct, with up to an eight-fold difference
from the highest to the lowest expressing line (Figure 2).
However, the overall range and average of fluorescence
levels for each construct of DsRed2, tdTomato, pporRFP
and mOrange were not significantly different, even
though there were differences among specific lines within
constructs (genes). Therefore, the results demonstrate
that selecting any of these FP genes for use as transgenic
reporters is justified and each should give relatively con-
gruent results. We did note that the maximum fluores-
cence among all FP genes and events analyzed was for a
pporRFP line (T17-2-15; statistically significant at the
P= 0.0001 level) (Figure 2). Also, pporRFP is a unique
OFP to transgenic plants; these are the first published
quantitative data on its use in plants. It is a tetramer OFP
that was originally cloned from the hard coral Porites
porites; it was chosen for assessment because of its at-
tractive spectral properties [24], which enables micros-
copy using the standard OFP-DsRed filter sets in
epifluorescence microscopy. It was because of these early
initial results that we chose pporRFP to include as the
scorable FP marker when we constructed the versatile
large pANIC vector set for Gateway-enabled monocot
transformation [27]. While there are no published
expression- or fluorescence data yet in monocots, we
observed that pporRFP is very effective in rice (Oryza
sativa) and switchgrass (Panicum virgatum) as a trans-
genic reporter gene [27,28]. Indeed, until recently,
switchgrass transformation has been very difficult and in-
efficient. The use of overexpression of pporRFP and
tracking analysis of transformed tissue has enabled im-
portant increases in transformation efficiency of switch-
grass [29]. We chose pporRFP instead of tdTomato for
this purpose since the latter gene is approximately twice
the size of the former and we valued minimizing the total
vector size for this project.

Plant codon optimization effects of pporRFP in stable
transgenic plants
As a result of this high fluorescence using the native
pporRFP gene, we modified the nucleotide sequence with
the intention of optimizing the codons for plants to fur-
ther enhance the fluorescent expression levels. Utilizing
Arabidopsis thaliana most commonly used codons as a
model, pporRFPmut was stably transformed into tobacco
and transgenic T0 lines were screened for fluorescence.
Ten transgenic lines were selected and carried through
to the T1 progeny as above, where they were directly
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Figure 2 Comparison of different OFP expression in tobacco. Ten independent transgenic lines overexpressing each FP gene construct were
selected. Leaf samples (youngest fully expanded leaf) from each of three individual plants were measured for each transgenic line and the
average fluorescence intensity at the peak excitation wavelength is shown. All fluorescent measurements were normalized to the non-transgenic
tobacco control (cv. Xanthi).
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compared to the native pporRFP gene for expression of
fluorescence. Surprisingly, the overall fluorescence level
of the codon-altered pporRFPmut was significantly lower
than that of the native pporRFP (Figure 3). The average
fluorescent measurements at the peak emission wave-
length (595 nm) for the pporRFP and pporRFPmut trans-
genic tobacco were 2.9 × 105 (± 1.2 × 105) and 1.7 × 105

(± 0.5 × 105), respectively. We are curious as to why plant
codon optimization failed, since it has increased expres-
sion and accumulation of other proteins synthesized in
plants, most notably Bacillus thuringiensis endotoxins
[30]. One speculation is that in fact perhaps, the codon-
optimized genes were overexpressed, yet misfolded,
which was observed when DsRed and the RFP eqFP611
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Figure 3 Fluorescence measurements for tobacco overexpressing ppo
transgenic lines were selected for overexpression of each of the constructs
leaf) from each of three individual plants were measured for each transgen
transgenic tobacco (Xanthi, negative control) is denoted with a dotted line
(Xanthi) control.
were overexpressed in bacteria [31]. Lower expression, in
this situation, led to improved fluorescence.

ER-targeting greatly enhances the fluorescence of
tdTomato and mOrange in stable transgenic plants
The most important finding of our study is the dramatic
enhancement of fluorescence in overexpressed FP genes
from the additions of signal peptide and the ER retention
peptides to both tdTomato and mOrange. The spectro-
fluorometric measurements we observe in stably trans-
genic tobacco expressing tdTomato-ER versus non-
targeted tdTomato are congruent with the microscopy
images we observed for the agroinfiltration experiments,
in which ER retention increased fluorescence (Figures 1
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and 4). ER targeting rendered a doubling of fluorescence
for tdTomato when examining the best performing lines
of each (Figure 4). When we compared the top four lines
of each construct relative to fluorescence, there was, on
average, nearly a tripling of fluorescence for ER-targeted
vs. non-targeted tdTomato (8.9 × 105 (± 0.6 × 105) and
3.2 × 105 (± 0.8 × 105, respectively)). Furthermore, the
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Figure 4 Fluorescence measurements for tobacco overexpressing tdT
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greater visualization and tracking of expressing trans-
genics. For phytosensing applications or other assays
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where real-time visible assays of inducible promoters are
important, this dramatic increase in fluorescence will be
a key feature in success in both the lab and field settings
[18,32,33].
We overexpressed the entire collection of genes

(except for pporRFP-ER) in Arabidopsis, grown at the
same time in similar to conditions to directly compare
fluorescence among variants in a common species
(Figure 5). Again, the quantitative data are consistent
with the qualitative data from the agroinfiltration experi-
ment (Figures 1, 4, and 5). There is a large and signifi-
cant ER-targeting enhancement for tdTomato and
mOrange, while the alteration of the tetrameric protein
encoding genes pporRFP and DsRed resulted in dimin-
ished fluorescence and, hence, usability of these modi-
fied genes as reporters in transgenic plants (Figure 6).
We observed an approximate 1.5-fold greater fluores-
cence of Arabidopsis compared with tobacco (e.g., see
tdTomato data in Figures 4 and 5), but these data were
taken at different times and might represent environ-
mental effects or simply inherently brighter tissues
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Figure 6 Representative microscopy images showing a comparison of fluorescence of T2 Arabidopsis (A,D-G) and T1 tobacco (B, C, H-K)
tissue expressing DsRed2, DsRed2-ER, tdTomato, tdTomato-ER, pporRFP, pporRFPmut-ER, mOrange, mOrange-ER or non-transgenic
controls. Transgenic line designations precede species and OFP identities. Images were taken using an epifluorescence microscope. Fluorescent
pictures were taken with tdTomato filter set (ex: 535/30 nm, em: 600/50 nm) for all constructs except mOrange, which utilized a mOrange filter
set (ex: 535/30 nm, em:585/40 nm). Inset pictures and H and J were taken using white light. (A) A37-16-23 potted Arabidopsis expressing
tdTomato-ER (20 s exp), white light inset 5.5 ms exp. (B) Various tobacco line seedlings in potting media expressing pporRFP (2 min exp). (C)
Tobacco buds expressing (left to right) non-transgenic, T21-12-16 mOrange, T37-15-2 mOrange-ER (20 s exp), white light inset 1.6 ms exp. (D)
Arabidopsis roots expressing (left to right) non-transgenic, A17-2-25 pporRFP, A37-14-13 pporRFPmut-ER, A21-13-29 tdTomato, A37-16-23
tdTomato-ER, A39-2-17 DsRed, A37-19-33 DsRed-ER (40 s exp), white light inset 16 ms exp. The root furthest to the right (7th) is not clearly shown
in the inset. (E) Arabidopsis roots expressing (left to right) non-transgenic, A21-12-9 mOrange, A37-15-56 mOrange-ER (40 s exp), white light inset
16 ms exp. (F) Arabidopsis floral buds expressing (clockwise, starting at 12:00) DsRed, tdTomato, pporRFP, non-transgenic (20 s exp), white light
inset 4 ms exp. (G) Arabidopsis flowers expressing (left to right) non-transgenic, mOrange, mOrange-ER (20 s exp), white light inset 2.5 ms exp.
(H,I) Tobacco leaves clockwise from the top: non-transgenic, T17-2-4 pporRFP, T39-2-1 DsRed, T21-13-8 tdTomato (30 s exp), white light inset
3 ms exp. (J,K) Tobacco leaves clockwise from the top: non-transgenic, T37-19-1 DsRed-ER and T37-16-9 tdTomato-ER), white light inset 3 ms exp.
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increased accumulation of protein, which, in the ER, com-
prises a protected environment with attenuated proteo-
lytic activity that also is imbued with molecular
chaperones for protein folding.
Conclusions
OFPs have emerged as the real-time in vivo reporter
genes of choice for plant transformation. Endoplasmic
reticulum targeting allows the accumulation of greater
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OFP monomers than non-targeting in select OFPs.
TdTomato-ER is the most brightly fluorescing FP mar-
ker gene ever characterized in transgenic plants, fol-
lowed by mOrange-ER. These OFP variants will be
especially valuable in quantifying inducible expression in
plant organs.

Methods
Vector construction and Agrobacterium transformation
The coding region of pporRFP was amplified from the
vector pGem-T-gbr15 using the forward primer 5′-
ATGGCTCTTTCAAAGCAAAGTGG-3′ and reverse
primer 5′- TTAGTGATGGTGATGGTGATGGG-3′.
mOrange and tdTomato containing vectors were
obtained from the laboratory of Roger Tsien (University
of California San Diego). mOrange CDS was amplified
from pRSET-mOrange using the forward primer 5′- AT
GGTGAGCAAGGGCGAGGAGAATA-3′ and reverse
primer 5′ TTACTTGTACAGCTCGTCCATGC-3′. The
tdTomato CDS was amplified from pRSET-tdTomato
using the forward primer 5′- ATGGTGAGCAAGGGCG
AGGAGGT-3′ and reverse primer 5′-TTACTTGTAC
AGCTCGTCCATGC -3′. The resulting products were
cloned into the entry vector pCR8/GW-TOPO (Invitro-
gen). DsRed2 coding sequence (Clontech) was recom-
bined into the entry vector pDONR/Zeo from pET160/
GW-DsRed2 using BP Clonase (Invitrogen). The N-
terminal signal polypeptide sequence (MKT
NLFLFLIFSLLLSLSSAEF) and C-terminal ER-retention
polypeptide sequence (HDEL) were added to coding
sequences through assembly and amplification PCR as
described by Richardson et al [39]. Common 5′assembly
primer 5′ER01 (5′-CACCATGAAAACTAATCTTTTC
TTGTTTCTTATCTTTTCACTTCTTTTGAGCTTAA
GCTCTGCAG-3′) and 3′ assembly primer 3′ER20 (5′-
TTACAACTCGTCATGCTTGTACAGCTCGTCCATG
CCG-3′) were used in conjunction with sequence spe-
cific assembly primers in assembly PCR from a template
of fluorescent protein coding sequence described above.
Sequence specific assembly primers were as follows:
mOrangeER (5′- GGCCATGTTATTCTCCTCGCCCTT
GCTCACGAACTCTGCAGAGCTTAAGCTCAAAAG
AA-3′), tdTomatoER (5′- CTCTTTGATGACCTCCTC
GCCCTTGCTCACGAACTCTGCAGAGCTTAAGCTC
AAAAG-3′), DsRed2ER (5′- GATGACGTTCTCGGAG
GAGGCGAACTCTGCAGAGCTTAAGCTCAAAAGA
A). A mutagenized ppor sequence was created using the
GeMS program [40], utilizing Arabiopsis thaliana codon
usage as a template, and a codon cutoff frequency of 0.2.
Full length mutatgenized ppor product was assembled
from partially overlapping 60-mer oligos designed via
the program Gene Design [39]. All products of assembly
PCR were cloned into the directional entry vector
pENTR/D-TOPO.
OFP-containing entry vectors were recombined into
the plant binary destination vector pMDC32 [3]. Fea-
tures of this vector include constitutive expression of the
gene of interest via a dual CaMV 35 S promoter and
hygromycin selection of transgenic plant tissue. Binary
vectors were transformed into Agrobacterium tumefa-
ciens GV3850. See the Additional file 1 for vector con-
struction diagrams. All nine expression vectors are
available via MTA (See http://plantsciences.utk.edu/
stewart.htm) as follows: mMDC32-DsRed2, mMDC32-
tdTomato, mMDC32-mOrange, mMDC32-pporRFP,
mMDC32-pporRFP-mut, mMDC32-DsRed2-ER, mMD
C32-tdTomato-ER, mMDC32-mOrange-ER, and mMD
C32-pporRFP-mut-ER.

Plant transformation
Agroinfiltration of Nicotiana benthamiana was per-
formed as described by Liu et al. [28] Stable trans-
formation of tobacco cv Xanthi was performed using
the Horsch et al.[41] method. Stable transformation
of Arabidopsis Col1 ecotype was performed using
the floral dip method [42]. Arabidopsis plants were
grown in growth chambers and allowed to self-
fertilize. Spectrofluorometry analysis was completed
on Arabidopsis T2 generation seeds, screened on
MSA media containing 50 mg/L hygromycin, resist-
ant plants were transferred to potting media and
grown in growth chambers (10 hr day length, 18°C/
14°C day/night). Plants were 9-week-old rosettes
when spectrofluometry was performed. Self-fertilized
tobacco plants were grown in the greenhouse (16 hr.
day, 27-30°C). Tobacco plants for spectrofluorometry
analysis were started as T1 segregating seeds grown
in potting media, screened for fluorescent protein
expression using microscopy, transplanted to individ-
ual pots and grown to six-weed old stage under
greenhouse conditions.

Epifluorescent and confocal microscopy and
spectrofluorometry
Epifluorescent microscopy of plants was performed
using the tdTomato filter set: 535/30 nm excitation and
600/50 nm band pass emission or the mOrange filter
set: 535/30 excitation and 585/40 nm band pass emis-
sion filter (Olympus stereo microscope model SZX12,
Olympus America, Center Valley, PA, USA). Confocal
microscopy images were produced using a Leica TCS
SP2 microscope (Buffalo Grove, IL. USA), which allows
for adjustable bandwidths for the detected fluorescence.
The samples were excited with a 543 nm HeNe
laser and fluorescence emission was collected from
555–604 nm for mOrange, 570–620 nm for DsRed and
tdTomato, and 590 – 610 nm for pporRFP. Chlorophyll
autofluorescence was checked for each sample by

http://plantsciences.utk.edu/stewart.htm
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exciting the sample with 488 nm light from an argon ion
laser and collecting emission from 650–750 nm. When
chlorophyll autofluorescence was imaged along with the
fluorescent protein, images were collected using sequen-
tial scanning to prevent bleedthrough fluorescence.
Fluorescence measurements (i.e., those results displayed
in Figures 2, 3, 4 and 5) were made using spectrofluoro-
metry according to methods described by Millwood
et al. [43] but with an updated FluorologW-3 system
(Jobin Yvon and Glen Spectra, Edison, NJ, USA). For
each of the samples, the youngest fully expanded leaf
was chosen to control for developmental stage.

Statistical analysis
Transgenic plants were statistically analyzed using a
one-way analysis of variance in SAS where the response
variable was fluorescence measurements from spectro-
fluorometry. If significant differences were found, mean
separations were performed using Fisher’s LSD to deter-
mine which genotypes were significantly different at the
P = 0.05- to P = 0.0001 levels.

Additional file

Additional file 1: Schematic diagram of the T-DNA used in
tobacco and Arabidopsis transformation. The vector shown is the
pMDC32-tdTomato-ER. Sequence comparison of native and codon-
optimized pporRFP. Underlined sequence represent ER targeting (5′)
and ER retention signals (3′).
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