53 research outputs found

    Angiotensin II in experimental hyperdynamic sepsis

    Get PDF
    INTRODUCTION: Angiotensin II (Ang II) is a potential vasopressor treatment for hypotensive hyperdynamic sepsis. However, unlike other vasopressors, its systemic, regional blood flow and renal functional effects in hypotensive hyperdynamic sepsis have not been investigated. METHODS: We performed an experimental randomised placebo-controlled animal study. We induced hyperdynamic sepsis by the intravenous administration of live E. coli in conscious ewes after chronic instrumentation with flow probes around the aorta and the renal, mesenteric, coronary and iliac arteries. We allocated animals to either placebo or angiotensin II infusion titrated to maintain baseline blood pressure. RESULTS: Hyperdynamic sepsis was associated with increased renal blood flow (from 292 +/- 61 to 397 +/- 74 ml/min), oliguria and a decrease in creatinine clearance (from 88.7 +/- 19.6 to 47.7 +/- 21.0 ml/min, P < 0.0001). Compared to placebo, Ang II infusion restored arterial pressure but reduced renal blood flow (from 359 +/- 81 ml/min to 279 +/- 86 ml/min; P < 0.0001). However, despite the reduction in renal blood flow, Ang II increased urine output approximately 7-fold (364 +/- 272 ml/h vs. 48 +/- 18 ml/h; P < 0.0001), and creatinine clearance by 70% (to 80.6 +/- 20.7 ml/min vs.46.0 +/- 26 ml/min; P < 0.0001). There were no major effects of Ang II on other regional blood flows. CONCLUSIONS: In early experimental hypotensive hyperdynamic sepsis, intravenous angiotensin II infusion decreased renal blood while inducing a marked increase in urine output and normalizing creatinine clearance

    The histopathology of septic acute kidney injury: a systematic review

    Get PDF
    INTRODUCTION: Sepsis is the most common trigger of acute kidney injury (AKI) in critically ill patients; understanding the structural changes associated with its occurrence is therefore important. Accordingly, we systematically reviewed the literature to assess current knowledge on the histopathology of septic AKI. METHODS: A systematic review of the MEDLINE, EMBASE and CINHAL databases and bibliographies of the retrieved articles was performed for all studies describing kidney histopathology in septic AKI. RESULTS: We found six studies reporting the histopathology of septic AKI for a total of only 184 patients. Among these patients, only 26 (22%) had features suggestive of acute tubular necrosis (ATN). We found four primate studies. In these, seven out of 19 (37%) cases showed features of ATN. We also found 13 rodent studies of septic AKI. In total, 23% showed evidence of ATN. In two additional studies performed in a dog model and a sheep model there was no evidence of ATN on histopathologic examination. Overall, when ATN was absent, studies reported a wide variety of kidney morphologic changes in septic AKI - ranging from normal (in most cases) to marked cortical tubular necrosis. CONCLUSION: There are no consistent renal histopathological changes in human or experimental septic AKI. The majority of studies reported normal histology or only mild, nonspecific changes. ATN was relatively uncommon

    Renal blood flow in sepsis

    Get PDF
    INTRODUCTION: To assess changes in renal blood flow (RBF) in human and experimental sepsis, and to identify determinants of RBF. METHOD: Using specific search terms we systematically interrogated two electronic reference libraries to identify experimental and human studies of sepsis and septic acute renal failure in which RBF was measured. In the retrieved studies, we assessed the influence of various factors on RBF during sepsis using statistical methods. RESULTS: We found no human studies in which RBF was measured with suitably accurate direct methods. Where it was measured in humans with sepsis, however, RBF was increased compared with normal. Of the 159 animal studies identified, 99 reported decreased RBF and 60 reported unchanged or increased RBF. The size of animal, technique of measurement, duration of measurement, method of induction of sepsis, and fluid administration had no effect on RBF. In contrast, on univariate analysis, state of consciousness of animals (P = 0.005), recovery after surgery (P < 0.001), haemodynamic pattern (hypodynamic or hyperdynamic state; P < 0.001) and cardiac output (P < 0.001) influenced RBF. However, multivariate analysis showed that only cardiac output remained an independent determinant of RBF (P < 0.001). CONCLUSION: The impact of sepsis on RBF in humans is unknown. In experimental sepsis, RBF was reported to be decreased in two-thirds of studies (62 %) and unchanged or increased in one-third (38%). On univariate analysis, several factors not directly related to sepsis appear to influence RBF. However, multivariate analysis suggests that cardiac output has a dominant effect on RBF during sepsis, such that, in the presence of a decreased cardiac output, RBF is typically decreased, whereas in the presence of a preserved or increased cardiac output RBF is typically maintained or increased

    The impact of acute nutritional interventions on the plasma proteome

    Get PDF
    Context: Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. Objective: Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. Methods: We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. Results: Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. Conclusion: Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system

    Polymorphisms of genes coding for ghrelin and its receptor in relation to colorectal cancer risk: a two-step gene-wide case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), has two major functions: the stimulation of the growth hormone production and the stimulation of food intake. Accumulating evidence also indicates a role of ghrelin in cancer development.</p> <p>Methods</p> <p>We conducted a case-control study to examine the association of common genetic variants in the genes coding for ghrelin (GHRL) and its receptor (GHSR) with colorectal cancer risk. Pairwise tagging was used to select the 11 polymorphisms included in the study. The selected polymorphisms were genotyped in 680 cases and 593 controls from the Czech Republic.</p> <p>Results</p> <p>We found two SNPs associated with lower risk of colorectal cancer, namely SNPs rs27647 and rs35683. We replicated the two hits, in additional 569 cases and 726 controls from Germany.</p> <p>Conclusion</p> <p>A joint analysis of the two populations indicated that the T allele of rs27647 SNP exerted a protective borderline effect (P<sub>trend </sub>= 0.004).</p

    Mild-to-Moderate Kidney Dysfunction and Cardiovascular Disease: Observational and Mendelian Randomization Analyses

    Full text link
    BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke. METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million personyears of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank. RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eG FR values 105 mL.min(-1).1.73 m(-2), compared with those with eG FR between 60 and 105 mL.min(-1).1.73 m(-2). Mendelian randomization analyses for CHD showed an association among participants with eGFR 105 mL.min(-1).1.73 m(-2). Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin Alc, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD. CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure.Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.</p
    • 

    corecore