7 research outputs found

    Toward a mathematical theory of perception

    Get PDF
    A new technique for the modelling of perceptual systems called formal modelling is developed. This technique begins with qualitative observations about the perceptual system, the so-called perceptual symmetries, to obtain through mathematical analysis certain model structures which may then be calibrated by experiment. The analysis proceeds in two different ways depending upon the choice of linear or nonlinear models. For the linear case, the analysis proceeds through the methods of unitary representation theory. It begins with a unitary group representation on the image space and produces what we have called the fundamental structure theorem. For the nonlinear case, the analysis makes essential use of infinite-dimensional manifold theory. It begins with a Lie group action on an image manifold and produces the fundamental structure formula. These techniques will be used to study the brightness perception mechanism of the human visual system. Several visual groups are defined and their corresponding structures for visual system models are obtained. A new transform called the Mandala transform will be deduced from a certain visual group and its implications for image processing will be discussed. Several new phenomena of brightness perception will be presented. New facts about the Mach band illusion along with new adaptation phenomena will be presented. Also a new visual illusion will be presented. A visual model based on the above techniques will be presented. It will also be shown how use of statistical estimation theory can be made in the study of contrast adaptation. Furthermore, a mathematical interpretation of unconscious inference and a simple explanation of the Tolhurst effect without mutual channel inhibition will be given. Finally, image processing algorithms suggested by the model will be used to process a real-world image for enhancement and for "form" and texture extraction

    Doctor of Philosophy

    No full text
    dissertationA new technique for the modelling of perceptual systems called formal modelling is developed. This technique begins with qualitative observations aout the perceptual system, the so-called perceptual symmetries, to obtain through mathematical analysis certain model structures which may then be calibrated by experiment. The analysis proceeds in two different ways depending upon the choice of linear or nonlinear models. For the linear case, the analysis proceeds through the methods of unitary representation theory. It begins with a unitary group representation on the image space and produces what we have called the fundamental structure theorem. For the nonlinear case, the analysis makes essential use of infinite-dimensional manifold theory. It begins with a Lie group action on the image manifold and produces the fundamental structure formula. these techniques will be used to study the brightness perception mechanism of the human visual system. Several visual groups are defined and their corresponding structures for visual system models are obtained. A new transform called the Mandala transform will be deduced from a certain visual group and its implications for image processing will be discussed. Several new phenomena of brightness perception will be presented. New facts about the Mach band illusion along with new adaptation phenomena will be presented. Also a new visual illusion will be presented. A visual model based on the above techniques will be presented. It will also be shown how use of statistical estimation theory can be made in the study of contrast adaptation. Furthermore, a mathematical interpretation of unconscious inference and a simple explanation of the Tolhurst effect without effect with out mutual channel in hibition will be given. Finally, image processing algorithms suggested by the model will be used to process a real-world image for enhancement and for "form" and texture extraction

    The Mechanism of Olfaction

    No full text

    ACC/AHA guidelines for coronary angiography11“ACC/AHA Guidelines for Coronary Angiography” was approved by the American College of Cardiology Board of Trustees in October 1998 and by the American Heart Association Science Advisory and Coordinating Committee in December 1998.22When citing this document, the American College of Cardiology and the American Heart Association request that the following format be used: Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SD, Pepine CJ, Watson RM. ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography). J Am Coll Cardiol1999;33:1756–82433This document is available on the websites of the ACC (www.acc.org) and the AHA (www.americanheart.org). Reprints of this document (the complete guidelines) are available for $5 each by calling 800-253-4636 (US only) or writing the American College of Cardiology, Educational Services, 9111 Old Georgetown Road, Bethesda, MD 20814-1699. Ask for reprint No. 71-0164. To obtain a reprint of the shorter version (executive summary and summary of recommendations) published in the May 4, 1999, issue of Circulation, ask for reprint No. 71-0163. To purchase additional reprints (specify version and reprint number): up to 999 copies, call 800-611-6083 (US only) or fax 413-665-2671; 1000 or more copies, call 214-706-1466, fax 214-691-6342, or e-mail [email protected]

    No full text
    corecore