2,375 research outputs found

    PKM and the maintenance of memory.

    Get PDF
    How can memories outlast the molecules from which they are made? Answers to this fundamental question have been slow coming but are now emerging. A novel kinase, an isoform of protein kinase C (PKC), PKMzeta, has been shown to be critical to the maintenance of some types of memory. Inhibiting the catalytic properties of this kinase can erase well-established memories without altering the ability of the erased synapse to be retrained. This article provides an overview of the literature linking PKMzeta to memory maintenance and identifies some of the controversial issues that surround the bold implications of the existing data. It concludes with a discussion of the future directions of this domain

    The cellular mechanisms of learning in Aplysia : of blind men and elephants

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2006. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 210 (2007): 271-279.Until recently, investigations of the neurobiological substrates of simple forms of learning and memory in the marine snail Aplysia have focused mostly on plastic changes that occur within the presynaptic sensory neurons. Here, I summarize the results of recent studies that indicate that exclusively presynaptic processes cannot account for simple forms of learning in Aplysia. In particular, I present evidence that postsynaptic mechanisms play a far more important role in nonassociative learning in Aplysia than has been appreciated before now. Moreover, I describe recent data that suggests the intriguing hypothesis that the persistent, learning-induced changes in Aplysia sensory neurons might depend critically on postsynaptic signals for their induction. Finally, I discuss the potential applicability of this hypothesis to learning-related synaptic plasticity in the mammalian brain.The work from my laboratory discussed in this review was supported by National Institutes of Health Grants NS29563 and MH068543

    Biological Therapy in the Treatment of Ulcerative Colitis

    Get PDF
    Ulcerative colitis (UC), a subdivision of inflammatory bowel disease, is a chronic disease of the large intestines. Ulcerative colitis is normally a lifelong chronic illness with times of intense flairs and remission. During a flare, the lining of the colon becomes inflamed, and develops small ulcers causing patients to experience rectal bleeding, vomiting, anemia and diarrhea. The treatment options available to treat colitis are very small, causing many patients to need a total colectomy with in the first five years of their diagnosis. However, recent advancement in bio-technology has led to the development of a large array of new therapeutic agents intended to target the exact site in the multifaceted cascade of cytokine and chemokine effector molecules involved in UC pathogenesis. This article discusses the introduction of the chimeric monoclonal antibody to TNFa that has deeply affected the clinical treatment of moderate to severe ulcerative colitis, opening the door to a new era in the treatment of this disease. Studies discussed in this paper prove the effectiveness of both Remicade and Humira, two different biologics, given to patients with an active state of this disease

    David L. Glanzman

    Get PDF

    Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia.

    Get PDF
    Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM--caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories

    Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade.

    Get PDF
    The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start). This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5-2.0 Hz. A more extended form (termed "short-term habituation" here), which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block). We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs), whereas the rapid form does not

    Differential Classical Conditioning of the Gill-Withdrawal Reflex In Aplysia Recruits Both Nmda Receptor-Dependent Enhancement and Nmda Receptor-Dependent Depression Of the Reflex

    Get PDF
    Differential classical conditioning of the gill-withdrawal response (GWR) in Aplysia can be elicited by training in which a conditioned stimulus (CS) delivered to one side of the siphon (the CS+) is paired with a noxious unconditioned stimulus (US; tail shock), while a second conditioned stimulus (the CS-), delivered to a different siphon site, is unpaired with the US. NMDA receptor(NMDAR) activation has been shown previously to be critical for nondifferential classical conditioning in Aplysia. Here, we used a semi-intact preparation to test whether differential classical conditioning of the GWR also depends on activation of NMDARs. Differential training produced conditioned enhancement of the reflexive response to the CS+ and a reduction in the response to the CS-. Comparison of the results after differential training with those after training in which only the two CSs were presented (CS-alone experiments) indicated that the decrement in the response to CS-after differential training was not caused by habituation. Surprisingly, differential training in the NMDAR antagonist APV(DL-2-amino-5-phosphonovalerate) blocked not only the conditioned enhancement of the GWR, but also the conditioning-induced depression of the GWR. We suggest that differential conditioning involves an NMDAR-dependent, competitive interaction between the separate neural pathways activated by the CS+ and CS-

    PCIe Riser Extension Assembly

    Get PDF
    The PCIe Riser Extension provides geometric flexibility and the capability to expose all PCIe lanes from four processors on a single four socket motherboard to the chassis ends that may be a significant distance away, yet meet the electrical specifications required. The PCIe Riser Extension utilizes standard commercially available connectors and cabling to achieve this task
    • …
    corecore