72 research outputs found
The role of the global cryosphere in the fate of organic contaminants
The cryosphere is an important component of global organic contaminant cycles. Snow is an efficient scavenger of atmospheric organic pollutants while a seasonal snowpack, sea ice, glaciers and ice caps are contaminant reservoirs on time scales ranging from days to millennia. Important physical and chemical processes occurring in the various cryospheric compartments impact contaminant cycling and fate. A variety of interactions and feedbacks also occur within the cryospheric system, most of which are susceptible to perturbations due to climate change. In this article, we review the current state of knowledge regarding the transport and processing of organic contaminants in the global cryosphere with an emphasis on the role of a changing climate. Given the complexity of contaminant interactions with the cryosphere and limitations on resources and research capacity, interdisciplinary research and extended collaborations are essential to close identified knowledge gaps and to improve our understanding of contaminant fate under a changing climate
Surface-Enhanced Nitrate Photolysis on Ice
Heterogeneous nitrates photolysis is the trigger for many chemical processes occurring in the polar boundary layer and is widely believed to occur in a quasi-liquid layer (QLL) at the surface of ice. The dipole forbidden character of the electronic transition relevant to boundary layer atmospheric chemistry and the small photolysis/photoproducts quantum yields in ice (and in water) may confer a significant enhancement and interfacial specificity to this important photochemical reaction at the surface of ice. Using amorphous solid water films at cryogenic temperatures as models for the disordered interstitial air/ice interface within the snowpack suppresses the diffusive uptake kinetics thereby prolonging the residence time of nitrate anions at the surface of ice. This approach allows their slow heterogeneous photolysis kinetics to be studied providing the first direct evidence that nitrates adsorbed onto the first molecular layer at the surface of ice are photolyzed more effectively than those dissolved within the bulk. Vibrational spectroscopy allows the ~3-fold enhancement in photolysis rates to be correlated with the nitrates’ distorted intramolecular geometry thereby hinting at the role played by the greater chemical heterogeneity in their solvation environment at the surface of ice than in the bulk. A simple 1D kinetic model suggests 1-that a 3(6)-fold enhancement in photolysis rate for nitrates adsorbed onto the ice surface could increase the photochemical NO[subscript 2] emissions from a 5(8) nm thick photochemically active interfacial layer by 30%(60)%, and 2-that 25%(40%) of the NO[subscript 2] photochemical emissions to the snowpack interstitial air are released from the top-most molecularly thin surface layer on ice. These findings may provide a new paradigm for heterogeneous (photo)chemistry at temperatures below those required for a QLL to form at the ice surface
Discrepancies between formaldehyde measurements and methane oxidation model predictions in the Antarctic troposphere: An assessment of other possible formaldehyde sources
Abstract. Formaldehyde (HCHO) is a key intermediate in the photooxidation of methane by hydroxyl radicals. Through its photolysis it is also a source for free radicals in the troposphere. Owing to these reactions, HCHO influences the oxidation capacity of the atmosphere and is a suitable species to test our current understanding of atmospheric oxidation pathways. Especially in polar regions, discrepancies between measurements and model calculations exist. Though recent investigations in the Arctic suggest that HCHO emissions from the snow surface might act as the missing source, the question remains unresolved for the Antarctic. We compare year-round HCHO measurements in Antarctica with model results from a simple photochemical box model. The observed ambient HCHO mixing ratios cannot be explained by methane photooxidation alone. Inclusion of HCHO emissions from the snow surface makes the model results and measurements consistent, but significantly higher emissions than those derived in the Arctic are needed to explain the observed HCHO mixing ratios. We discuss other possible sources such as oxidation of dimethylsulfide (DMS), isoprene, ethene, propene, and the effect of halogens, that may be responsible for the enhanced HCHO mixing ratios in the marine Antarctic troposphere. We find that, for the largest HCHO mixing ratio measured, methane is likely to produce only about 9% of the required HCHO; isoprene (including generated propene) about 22%; and ethene, DMS and halogens together only 7%. If the remaining HCHO is produced by a flux from the snow, the flux required is about 1.9 x 1013 molecules m-2 s-1
Evaluating the Performance of Two Automated Anti-drug Antibodies Assays for Infliximab and Adalimumab Without Acid Dissociation
Monitoring anti-drug antibodies (ADAs) to infliximab and adalimumab is critical to treatment management in various autoimmune disorders. The growing need for proactive therapeutic monitoring further requires the detection of ADAs in the presence of measurable concentrations of infliximab or adalimumab. To provide robust analytical assays for clinical application, we evaluated two automated immunoassays developed using ImmunoCAP™ technology and based on the bridging format to measure serum ADAs to infliximab and adalimumab respectively. Without an acid-dissociation step, these research prototype assays can detect a positive control monoclonal ADA towards infliximab and adalimumab, ranging from < 25 ng/ml to 10,000 ng/mL. Both assays exhibit imprecision less than 20% at different ADA titer levels and can distinguish ADAs towards different drug targets. In method comparison using authentic patient samples, the quantitative results of the ADA assays are not directly comparable to two existing clinical immunoassays for ADAs (correlation coefficient rs = 0.673 for infliximab ADAs; rs = 0.510 for adalimumab ADAs), presumably due to the lack of commutable ADA standards and the polyclonal nature of ADAs. Nevertheless, there is qualitative agreement between the methods when evaluating putative positive and negative patient samples (overall agreement 0.83 for infliximab ADAs; 0.76 for adalimumab ADAs). Biotin and high levels of rheumatoid factors may interfere with the performance of the automated assays due to competitive binding with the biotinylated drug and non-specific formation of bridging complexes. The two ImmunoCAP assays can provide new analytical methods for proactive therapeutic monitoring of adalimumab and infliximab
- …