3,922 research outputs found
Recommended from our members
Species-specific susceptibility to cannabis-induced convulsions
Background and Purpose. Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potential confounder is the presence of both 9-tetrahydrocannabinol ( 9-THC), variously reported to be pro- and anti-convulsant, and cannabidiol (CBD), widely confirmed as anticonvulsant. Therefore, we investigated effects of prolonged exposure to different 9-THC/CBD cannabis extracts on seizure activity and associated measures of endocannabinoid (eCB) system signalling.
Experimental Approach. Cannabis extract effects on in vivo neurological and behavioural responses, and on bioanalyte levels, were measured in rats and dogs. Extract effects on seizure activity were measured using electroencephalography-telemetry in rats. eCB signalling was also investigated using radioligand binding in cannabis extract-treated rats, and treatment-naïve rat, mouse, chicken, dog and human tissue.
Key Results. Prolonged exposure to cannabis extracts caused spontaneous, generalised seizures, subserved by epileptiform discharges in rats, but not dogs, and produced higher 9-THC, but lower 11-hydroxy-THC (11-OH-THC) and CBD, plasma concentrations in rats versus dogs. In the same rats, prolonged exposure to cannabis also impaired cannabinoid type 1 receptor (CB1R)-mediated signalling. Profiling CB1R expression, basal activity, extent of activation and sensitivity to 9-THC suggested interspecies differences in eCB signalling, being more pronounced in a species that exhibited cannabis extract-induced seizures (rat) than a species that did not (dog).
Conclusion and Implications. Sustained cannabis extract treatment caused differential seizure, behavioural and bioanalyte levels between rats and dogs. Supporting radioligand binding data suggest species differences in eCB signalling. Interspecies variations may have important implications for predicting cannabis-induced convulsions from animal models
Discussing Sudden Unexpected Death in Epilepsy (SUDEP) with Patients: Practices of Health-Care Providers
Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy.
Limited data are available regarding the evolution over time of the rate of sudden unexpected death in epilepsy patients (SUDEP) in drug-resistant epilepsy. The objective is to analyze a database of 40 443 patients with epilepsy implanted with vagus nerve stimulation (VNS) therapy in the United States (from 1988 to 2012) and assess whether SUDEP rates decrease during the postimplantation follow-up period.
Patient vital status was ascertained using the Centers for Disease Control and Prevention's National Death Index (NDI). An expert panel adjudicated classification of cause of deaths as SUDEP based on NDI data and available narrative descriptions of deaths. We tested the hypothesis that SUDEP rates decrease with time using the Mann-Kendall nonparametric trend test and by comparing SUDEP rates of the first 2 years of follow-up (years 1-2) to longer follow-up (years 3-10).
Our cohort included 277 661 person-years of follow-up and 3689 deaths, including 632 SUDEP. Primary analysis demonstrated a significant decrease in age-adjusted SUDEP rate during follow-up (S = -27 P = .008), with rates of 2.47/1000 for years 1-2 and 1.68/1000 for years 3-10 (rate ratio 0.68; 95% confidence interval [CI] 0.53-0.87; P = .002). Sensitivity analyses confirm these findings.
Our data suggest that SUDEP risk significantly decreases during long-term follow-up of patients with refractory epilepsy receiving VNS Therapy. This finding might reflect several factors, including the natural long-term dynamic of SUDEP rate, attrition, and the impact of VNS Therapy. The role of each of these factors cannot be confirmed due to the limitations of the study
Deep brain and cortical stimulation for epilepsy
Background : Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes).
Objectives : To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials.
Search methods : We searched PubMed (6 August 2013), the Cochrane Epilepsy Group Specialized Register (31 August 2013), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7 of 12) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed.
Selection criteria : Randomized controlled trials (RCTs) comparing deep brain or cortical stimulation to sham stimulation, resective surgery or further treatment with antiepileptic drugs.
Data collection and analysis : Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity.
Main results : Ten RCTs comparing one to three months of intracranial neurostimulation to sham stimulation were identified. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in 4 cross-over trials without any washout period.
Moderate-quality evidence could not demonstrate statistically or clinically significant changes in the proportion of patients who were seizure-free or experienced a 50% or greater reduction in seizure frequency (primary outcome measures) after 1 to 3 months of anterior thalamic DBS in (multi) focal epilepsy, responsive ictal onset zone stimulation in (multi) focal epilepsy patients and hippocampal DBS in (medial) temporal lobe epilepsy. However, a statistically significant reduction in seizure frequency was found for anterior thalamic DBS (-17.4% compared to sham stimulation; 95% confidence interval (CI) -32.1 to -1.0; high-quality evidence), responsive ictal onset zone stimulation (-24.9%; 95% CI -40.1 to 6.0; high-quality evidence)) and hippocampal DBS (-28.1%; 95% CI -34.1 to -22.2; moderate-quality evidence). Both anterior thalamic DBS and responsive ictal onset zone stimulation do not have a clinically meaningful impact on quality life after three months of stimulation (high-quality evidence).
Electrode implantation resulted in asymptomatic intracranial haemorrhage in 3% to 4% of the patients included in the two largest trials and 5% to 13% had soft tissue infections; no patient reported permanent symptomatic sequelae. Anterior thalamic DBS was associated with fewer epilepsy-associated injuries (7.4 versus 25.5%; P = 0.01) but higher rates of self-reported depression (14.8 versus 1.8%; P = 0.02) and subjective memory impairment (13.8 versus 1.8%; P = 0.03); there were no significant differences in formal neuropsychological testing results between the groups. Responsive ictal-onset zone stimulation was well tolerated with few side effects but SUDEP rate should be closely monitored in the future (4 per 340 [= 11.8 per 1000] patient-years; literature: 2.2-10 per 1000 patient-years). The limited number of patients preclude firm statements on safety and tolerability of hippocampal DBS.
With regards to centromedian thalamic DBS and cerebellar stimulation, no statistically significant effects could be demonstrated but evidence is of only low to very low quality.
Authors' conclusions : Only short term RCTs on intracranial neurostimulation for epilepsy are available. Compared to sham stimulation, one to three months of anterior thalamic DBS ((multi) focal epilepsy), responsive ictal onset zone stimulation ((multi) focal epilepsy) and hippocampal DBS (temporal lobe epilepsy) moderately reduce seizure frequency in refractory epilepsy patients. Anterior thalamic DBS is associated with higher rates of self-reported depression and subjective memory impairment. SUDEP rates require careful monitoring in patients undergoing responsive ictal onset zone stimulation. There is insufficient evidence to make firm conclusive statements on the efficacy and safety of hippocampal DBS, centromedian thalamic DBS and cerebellar stimulation. There is a need for more, large and well-designed RCTs to validate and optimize the efficacy and safety of invasive intracranial neurostimulation treatments
Postictal serotonin levels are associated with peri-ictal apnea.
ObjectiveTo determine the relationship between serum serotonin (5-HT) levels, ictal central apnea (ICA), and postconvulsive central apnea (PCCA) in epileptic seizures.MethodsWe prospectively evaluated video EEG, plethysmography, capillary oxygen saturation (SpO2), and ECG for 49 patients (49 seizures) enrolled in a multicenter study of sudden unexpected death in epilepsy (SUDEP). Postictal and interictal venous blood samples were collected after a clinical seizure for measurement of serum 5-HT levels. Seizures were classified according to the International League Against Epilepsy 2017 seizure classification. We analyzed seizures with and without ICA (n = 49) and generalized convulsive seizures (GCS) with and without PCCA (n = 27).ResultsPostictal serum 5-HT levels were increased over interictal levels for seizures without ICA (p = 0.01), compared to seizures with ICA (p = 0.21). In patients with GCS without PCCA, serum 5-HT levels were increased postictally compared to interictal levels (p < 0.001), but not in patients with seizures with PCCA (p = 0.22). Postictal minus interictal 5-HT levels also differed between the 2 groups with and without PCCA (p = 0.03). Increased heart rate was accompanied by increased serum 5-HT levels (postictal minus interictal) after seizures without PCCA (p = 0.03) compared to those with PCCA (p = 0.42).ConclusionsThe data suggest that significant seizure-related increases in serum 5-HT levels are associated with a lower incidence of seizure-related breathing dysfunction, and may reflect physiologic changes that confer a protective effect against deleterious phenomena leading to SUDEP. These results need to be confirmed with a larger sample size study
Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex
Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences
Proposal for best practice in the use of video-EEG when psychogenic non-epileptic seizures are a possible diagnosis
The gold-standard for the diagnosis of psychogenic non-epileptic seizures (PNES) is capturing an attack with typical semiology and lack of epileptic ictal discharges on video-EEG. Despite the importance of this diagnostic test, lack of standardisation has resulted in a wide variety of protocols and reporting practices. The goal of this review is to provide an overview of research findings on the diagnostic video-EEG procedure, in both the adult and paediatric literature. We discuss how uncertainties about the ethical use of suggestion can be resolved, and consider what constitutes best clinical practice. We stress the importance of ictal observation and assessment and consider how diagnostically useful information is best obtained. We also discuss the optimal format of video-EEG reports; and of highlighting features with high sensitivity and specificity to reduce the risk of miscommunication. We suggest that over-interpretation of the interictal EEG, and the failure to recognise differences between typical epileptic and nonepileptic seizure manifestations are the greatest pitfalls in neurophysiological assessment of patients with PNES. Meanwhile, under-recognition of semiological pointers towards frontal lobe seizures and of the absence of epileptiform ictal EEG patterns during some epileptic seizure types (especially some seizures not associated with loss of awareness), may lead to erroneous PNES diagnoses. We propose that a standardised approach to the video-EEG examination and the subsequent written report will facilitate a clear communication of its import, improving diagnostic certainty and thereby promoting appropriate patient management
Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations
International Veterinary Epilepsy Task Force Consensus Proposal: Diagnostic approach to epilepsy in dogs
This article outlines the consensus proposal on diagnosis of epilepsy in dogs by the International Veterinary Epilepsy Task Force. The aim of this consensus proposal is to improve consistency in the diagnosis of epilepsy in the clinical and research settings. The diagnostic approach to the patient presenting with a history of suspected epileptic seizures incorporates two fundamental steps: to establish if the events the animal is demonstrating truly represent epileptic seizures and if so, to identify their underlying cause. Differentiation of epileptic seizures from other non-epileptic episodic paroxysmal events can be challenging. Criteria that can be used to make this differentiation are presented in detail and discussed. Criteria for the diagnosis of idiopathic epilepsy (IE) are described in a three-tier system. Tier I confidence level for the diagnosis of IE is based on a history of two or more unprovoked epileptic seizures occurring at least 24 h apart, age at epileptic seizure onset of between six months and six years, unremarkable inter-ictal physical and neurological examination, and no significant abnormalities on minimum data base blood tests and urinalysis. Tier II confidence level for the diagnosis of IE is based on the factors listed in tier I and unremarkable fasting and post-prandial bile acids, magnetic resonance imaging (MRI) of the brain (based on an epilepsy-specific brain MRI protocol) and cerebrospinal fluid (CSF) analysis. Tier III confidence level for the diagnosis of IE is based on the factors listed in tier I and II and identification of electroencephalographic abnormalities characteristic for seizure disorders. The authors recommend performing MRI of the brain and routine CSF analysis, after exclusion of reactive seizures, in dogs with age at epileptic seizure onset 6 years, inter-ictal neurological abnormalities consistent with intracranial neurolocalisation, status epilepticus or cluster seizure at epileptic seizure onset, or a previous presumptive diagnosis of IE and drug-resistance with a single antiepileptic drug titrated to the highest tolerable dose
Preoperative amygdala fMRI in temporal lobe epilepsy
Purpose: Anterior temporal lobe resections (ATLR) benefit 70% of patients with refractory mesial temporal lobe epilepsy (TLE), but may be complicated by emotional disturbances. We used functional magnetic resonance imaging (fMRI) to investigate the role of the amygdala in processing emotions in TLE and whether this may be a potential preoperative predictive marker for emotional disturbances following surgery.
Methods: We studied 54 patients with refractory mesial TLE due to hippocampal sclerosis (28 right, 26 left) and 21 healthy controls using a memory encoding fMRI paradigm, which included viewing fearful and neutral faces. Twenty-one TLE patients (10 left, 11 right) subsequently underwent ATLR. Anxiety and depression were assessed preoperatively and 4 months postoperatively using the Hospital Anxiety and Depression Scale.
Results: On viewing fearful faces, healthy controls demonstrated left lateralized, while right TLE patients showed bilateral amygdala activation. Left TLE patients had significantly reduced activation in left and right amygdalae compared to controls and right TLE patients. In right TLE patients, left and right amygdala activation was significantly related to preoperative anxiety and depression levels, and preoperative right amygdala activation correlated significantly with postoperative change of anxiety and depression scores, characterized by greater increases in anxiety and depression in patients with greater preoperative activation. No such correlations were seen for left TLE patients.
Discussion: The fearful face fMRI paradigm is a reliable method for visualizing amygdala activation in controls and patients with mesial TLE. Activation of the right amygdala preoperatively was predictive of emotional disturbances following right ATLR
- …
