555 research outputs found

    Enhanced Resolution of Poly-(Methyl Methacrylate) Electron Resist by Thermal Processing

    Full text link
    Granular nanostructure of electron beam resist had limited the ultimate resolution of electron beam lithography. We report a thermal process to achieve a uniform and homogeneous amorphous thin film of poly methyl methacrylate electron resist. This thermal process consists of a short time-high temperature backing process in addition to precisely optimized development process conditions. Using this novel process, we patterned arrays of holes in a metal film with diameter smaller than 5nm. In addition, line edge roughness and surface roughness of the resist reduced to 1nm and 100pm respectively.Comment: 8 pages, 4 figure

    Power extraction from ambient vibration

    Get PDF
    Autonomous devices such as sensors for personal area networks need a long battery lifetime in a small volume. The battery size can be reduced by incorporating micro-power generators based on ambient energy. This paper describes a new approach to the conversion of mechanical to electrical energy, based on charge transportation between two parallel capacitors. The polarization of the device is handled by an electret. A largesignal model was developed, allowing simulations of the behavior of any circuit based on this generator for any mechanical input signal. A small-signal model was derived in order to quantify the output power as a function of the design parameters. A layout was made based on a standard SOI-technology, available in a MPW. With this layout it is possible to generate 100 mW at 1200 Hz

    A new power MEMS component with variable capacitance

    Get PDF
    Autonomous devices such as wireless sensors and sensor networks need a long battery lifetime in a small volume. Incorporating micro-power generators based on ambient energy increases the lifetime of these systems while reducing the volume. This paper describes a new approach to the conversion of mechanical energy, available in vibrations, to electrical energy. The conversion principle is based on charge transportation between two parallel capacitors. An electret is used to polarize the device. A large-signal model was developed, allowing simulations of the behavior of the generator. A small-signal model was then derived in order to quantify the output power as a function of the design parameters. These models show the possibility of generating up to 40 muW with a device of 10 mm 2. A layout was made based on a standard SOI-technology, available in an MPW. With this design a power of 1 muW at 1020 Hz is expected

    Self-assembled hexagonal double fishnets as negative index materials

    Full text link
    We show experimentally the successful use of colloidal lithography for the fabrication of negative index metamaterials in the near-infrared wavelength range. In particular, we investigated a specific implementation of the widely studied double fishnet metamaterials, consisting of a gold-silica-gold layer stack perforated by a hexagonal array of round holes. Tuning of the hole diameter allows us to tailor these self-assembled metamaterials both as single- ({\epsilon} < 0) and double ({\epsilon} < 0 and {\mu} < 0) negative metamaterials

    Reentrant behavior in the superconducting phase-dependent resistance of a disordered 2-dimensional electron gas

    Get PDF
    We have investigated the bias-voltage dependence of the phase-dependent differential resistance of a disordered T-shaped 2-dimensional electron gas coupled to two superconducting terminals. The resistance oscillations first increase upon lowering the energy. For bias voltages below the Thouless energy, the resistance oscillations are suppressed and disappear almost completely at zero bias voltage. We find a qualitative agreement with the calculated reentrant behavior of the resistance and discuss quantitative deviations.Comment: 4 pages, 5 figures, to be published in Phys. Rev.

    A Temperature Analysis of High-power AlGaN/GaN HEMTs

    Get PDF
    Galliumnitride has become a strategic superior material for space, defense and civil applications, primarily for power amplification at RF and mm-wave frequencies. For AlGaN/GaN high electron mobility transistors (HEMT), an outstanding performance combined together with low cost and high flexibility can be obtained using a System-in-a-Package (SIP) approach. Since thermal management is extremely important for these high power applications, a hybrid integration of the HEMT onto an AlN carrier substrate is proposed. In this study we investigate the temperature performance for AlGaN/GaN HEMTs integrated onto AlN using flip-chip mounting. Therefore, we use thermal simulations in combination with experimental results using micro-Raman spectroscopy and electrical dc-analysis.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions
    corecore