95 research outputs found

    Restituer la densité et la diversité des liens entre le religieux et le politique

    Get PDF
    Ce numĂ©ro revient sur l’onde de choc des rĂ©volutions dans le monde arabe, Ă  partir des relations complexes, multiples et situĂ©es entre le religieux et le politique. Si jusqu’ici les consĂ©quences de ces soulĂšvements sont particuliĂšrement sombres, avec d’un cĂŽtĂ© des zones de bĂ©ances Ă©tatiques et de guerre civile, comme en Syrie et au YĂ©men et de l’autre, le redĂ©ploiement des rĂ©gimes autoritaires, comme en Égypte et, malgrĂ© le processus de ..

    fMRI Evidence for Activation of Multiple Cortical Regions in the Primary Auditory Cortex of Deaf Subjects Users of Multichannel Cochlear Implants

    Get PDF
    To investigate the activation of the auditory cortex by fMRI, three deaf subjects users of the Ineraid cochlear implant participated in our study. Possible interference between fMRI acquisition and the implanted electrodes was controlled and safe experimental conditions were obtained. For each subject, electrical stimuli were applied on different intracochlear electrodes, in monopolar mode. Stimulation of each electrode was actually producing auditory sensations of different pitches, as demonstrated by psychophysical pitch-ranking measurements in the same subjects. Because deaf subjects did not hear scanner noise, the data were collected in ‘silent background' conditions, i.e. as a result of pure auditory sensations. Functional maps showed activation of the primary auditory cortex, predominantly in the left hemisphere. Stimulation of each different intracochlear electrode revealed different clusters of activation. After cluster grouping, at least three regions have been identified in the auditory cortex of each subject, and comparisons with previous architectonic and functional studies are proposed. However, a tonotopic organization could not be clearly identified within each region. These arguments, obtained without interference with unwanted scanner noise, plead in favor of a functional subdivision of the primary auditory cortex into multiple cortical regions in cochlear implant user

    Implications of Deep Electrode Insertion on Cochlear Implant Fitting

    Get PDF
    Using long Med-El Combi40+ electrode arrays, it is now possible to cover the whole range of the cochlea, up to about two turns. Such insertion depths have received little attention. To evaluate the contribution of deeply inserted electrodes, five Med-El cochlear implant users were tested on vowel and consonant identification tests with fittings with first one, two, and up to five apical electrodes being deactivated. In addition, subjects performed pitch-ranking experiments, using loudness-balanced stimuli, to identify electrodes creating pitch confusions. Radiographs were taken to measure each electrode insertion depth. All subjects used each modified fitting for two periods of about 3weeks. During the experiment, the same stimulation rate and frequency range were maintained across all the fittings used for each individual subject. After each trial period the subject had to perform three consonant and three vowel identification tests. All subjects showed deep electrode insertions ranging from 605° to 720°. The two subjects with the deepest electrode insertions showed significantly increased vowel- and consonant-identification performances with fittings with the two or three most apical electrodes deactivated compared to their standard fitting with all available electrodes activated. The other three subjects did not show significant improvements in performance when one or two of their most apical electrodes were deactivated. Four out of five subjects preferred to continue use of a fitting with one or more apical electrodes deactivated. The two subjects with the deepest insertions also showed pitch confusions between their most apical electrodes. Two possible reasons for these results are discussed. One is to reduce neural interactions related to electrodes producing pitch confusions. Another is to improve the alignment of the frequency components of sounds coded by the electrical signals delivered to each electrode to the overall pitch of the auditory perception produced by the electrical stimulation of auditory nerve fiber

    Acoustic to Electric Pitch Comparisons in Cochlear Implant Subjects with Residual Hearing

    Get PDF
    The aim of this study was to assess the frequency-position function resulting from electric stimulation of electrodes in cochlear implant subjects with significant residual hearing in their nonimplanted ear. Six cochlear implant users compared the pitch of the auditory sensation produced by stimulation of an intracochlear electrode to the pitch of acoustic pure tones presented to their contralateral nonimplanted ear. Subjects were implanted with different ClarionŸ electrode arrays, designed to lie close to the inner wall of the cochlea. High-resolution radiographs were used to determine the electrode positions in the cochlea. Four out of six subjects presented electrode insertions deeper than 450°. We used a two-interval (one acoustic, one electric), two-alternative forced choice protocol (2I-2AFC), asking the subject to indicate which stimulus sounded the highest in pitch. Pure tones were used as acoustic stimuli. Electric stimuli consisted of trains of biphasic pulses presented at relatively high rates [higher than 700 pulses per second (pps)]. First, all electric stimuli were balanced in loudness across electrodes. Second, acoustic pure tones, chosen to approximate roughly the pitch sensation produced by each electrode, were balanced in loudness to electric stimuli. When electrode insertion lengths were used to describe electrode positions, the pitch sensations produced by electric stimulation were found to be more than two octaves lower than predicted by Greenwood's frequency-position function. When insertion angles were used to describe electrode positions, the pitch sensations were found about one octave lower than the frequency-position function of a normal ear. The difference found between both descriptions is because of the fact that these electrode arrays were designed to lie close to the modiolus. As a consequence, the site of excitation produced at the level of the organ of Corti corresponds to a longer length than the electrode insertion length, which is used in Greenwood's function. Although exact measurements of the round window position as well as the length of the cochlea could explain the remaining one octave difference found when insertion angles were used, physiological phenomena (e.g., stimulation of the spiral ganglion cells) could also create this difference. From these data, analysis filters could be determined in sound coding strategies to match the pitch percepts elicited by electrode stimulation. This step might be of main importance for music perception and for the fitting of bilateral cochlear implant

    Deep brain and cortical stimulation for epilepsy

    Get PDF
    Background : Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). Objectives : To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials. Search methods : We searched PubMed (6 August 2013), the Cochrane Epilepsy Group Specialized Register (31 August 2013), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7 of 12) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. Selection criteria : Randomized controlled trials (RCTs) comparing deep brain or cortical stimulation to sham stimulation, resective surgery or further treatment with antiepileptic drugs. Data collection and analysis : Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity. Main results : Ten RCTs comparing one to three months of intracranial neurostimulation to sham stimulation were identified. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in 4 cross-over trials without any washout period. Moderate-quality evidence could not demonstrate statistically or clinically significant changes in the proportion of patients who were seizure-free or experienced a 50% or greater reduction in seizure frequency (primary outcome measures) after 1 to 3 months of anterior thalamic DBS in (multi) focal epilepsy, responsive ictal onset zone stimulation in (multi) focal epilepsy patients and hippocampal DBS in (medial) temporal lobe epilepsy. However, a statistically significant reduction in seizure frequency was found for anterior thalamic DBS (-17.4% compared to sham stimulation; 95% confidence interval (CI) -32.1 to -1.0; high-quality evidence), responsive ictal onset zone stimulation (-24.9%; 95% CI -40.1 to 6.0; high-quality evidence)) and hippocampal DBS (-28.1%; 95% CI -34.1 to -22.2; moderate-quality evidence). Both anterior thalamic DBS and responsive ictal onset zone stimulation do not have a clinically meaningful impact on quality life after three months of stimulation (high-quality evidence). Electrode implantation resulted in asymptomatic intracranial haemorrhage in 3% to 4% of the patients included in the two largest trials and 5% to 13% had soft tissue infections; no patient reported permanent symptomatic sequelae. Anterior thalamic DBS was associated with fewer epilepsy-associated injuries (7.4 versus 25.5%; P = 0.01) but higher rates of self-reported depression (14.8 versus 1.8%; P = 0.02) and subjective memory impairment (13.8 versus 1.8%; P = 0.03); there were no significant differences in formal neuropsychological testing results between the groups. Responsive ictal-onset zone stimulation was well tolerated with few side effects but SUDEP rate should be closely monitored in the future (4 per 340 [= 11.8 per 1000] patient-years; literature: 2.2-10 per 1000 patient-years). The limited number of patients preclude firm statements on safety and tolerability of hippocampal DBS. With regards to centromedian thalamic DBS and cerebellar stimulation, no statistically significant effects could be demonstrated but evidence is of only low to very low quality. Authors' conclusions : Only short term RCTs on intracranial neurostimulation for epilepsy are available. Compared to sham stimulation, one to three months of anterior thalamic DBS ((multi) focal epilepsy), responsive ictal onset zone stimulation ((multi) focal epilepsy) and hippocampal DBS (temporal lobe epilepsy) moderately reduce seizure frequency in refractory epilepsy patients. Anterior thalamic DBS is associated with higher rates of self-reported depression and subjective memory impairment. SUDEP rates require careful monitoring in patients undergoing responsive ictal onset zone stimulation. There is insufficient evidence to make firm conclusive statements on the efficacy and safety of hippocampal DBS, centromedian thalamic DBS and cerebellar stimulation. There is a need for more, large and well-designed RCTs to validate and optimize the efficacy and safety of invasive intracranial neurostimulation treatments

    Consensus Panel on a Cochlear Coordinate System Applicable in Histologic, Physiologic, and Radiologic Studies of the Human Cochlea

    Get PDF
    Hypothesis—An objective cochlear framework, for evaluation of the cochlear anatomy and description of the position of an implanted cochlear implant electrode, would allow the direct comparison of measures performed within the various sub-disciplines involved in cochlear implant research. Background—Research on the human cochlear anatomy in relation to tonotopy and cochlear implantation is conducted by specialists from numerous disciplines such as histologists, surgeons, physicists, engineers, audiologists and radiologists. To allow accurate comparisons between and combinations of previous and forthcoming scientific and clinical studies, cochlear structures and electrode positions must be specified in a consistent manner. Methods—Researchers with backgrounds in the various fields of inner ear research as well as representatives of the different manufacturers of cochlear implants (Advanced Bionics Corp, Med-El, Cochlear Corp) were involved in consensus meetings held in Dallas, March 2005 and Asilomar, August 2005. Existing coordinate systems were evaluated and requisites for an objective cochlear framework were discussed. Results—The consensus panel agreed upon a 3-dimensional, cylindrical coordinate system of the cochlea using the “Cochlear View” as a basis and choosing a z-axis through the modiolus. The zero reference angle was chosen at the centre of the round window, which has a close relationship to the basal end of the Organ of Corti. Conclusions—Consensus was reached on an objective cochlear framework, allowing the outcomes of studies from different fields of research to be compared directly

    Differential modulation of excitatory and inhibitory neurons during periodic stimulation

    Get PDF
    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio

    Pitch Comparisons between Electrical Stimulation of a Cochlear Implant and Acoustic Stimuli Presented to a Normal-hearing Contralateral Ear

    Get PDF
    Four cochlear implant users, having normal hearing in the unimplanted ear, compared the pitches of electrical and acoustic stimuli presented to the two ears. Comparisons were between 1,031-pps pulse trains and pure tones or between 12 and 25-pps electric pulse trains and bandpass-filtered acoustic pulse trains of the same rate. Three methods—pitch adjustment, constant stimuli, and interleaved adaptive procedures—were used. For all methods, we showed that the results can be strongly influenced by non-sensory biases arising from the range of acoustic stimuli presented, and proposed a series of checks that should be made to alert the experimenter to those biases. We then showed that the results of comparisons that survived these checks do not deviate consistently from the predictions of a widely-used cochlear frequency-to-place formula or of a computational cochlear model. We also demonstrate that substantial range effects occur with other widely used experimental methods, even for normal-hearing listeners

    Memory prosthesis: is it time for a deep neuromimetic approach?

    Get PDF
    Memory loss, one of the most dreaded afflictions of the human condition, presents considerable burden on the world’s health care system and it is recognized as a major challenge in the elderly. There are only a few neuro-modulation treatments for memory dysfunctions. Open loop deep brain stimulation is such a treatment for memory improvement, but with limited success and conflicting results. In recent years closed-loop neuropros-thesis systems able to simultaneously record signals during behavioural tasks and generate with the use of inter-nal neural factors the precise timing of stimulation patterns are presented as attractive alternatives and show promise in memory enhancement and restoration. A few such strides have already been made in both animals and humans, but with limited insights into their mechanisms of action. Here, I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research. I propose what the necessary components (nodes, structure, connectivity, learning rules, and physi-ological responses) of such a deep neuromimetic model should be and what type of data are required to train/ test its performance, so it can be used as a true substitute of damaged brain areas capable of restoring/enhancing their missing memory formation capabilities. Considerations to neural circuit targeting, tissue interfacing, elec-trode placement/implantation and multi-network interactions in complex cognition are also provided

    DEVICTOR AgnĂšs, Images, combattants et martyrs. La guerre Iran-Irak vue par le cinĂ©ma, Coll. Terres et gens d’islam, Paris, IFRI, IISMM, Karthala, 2015, 487p.

    No full text
    En Iran, la guerre contre l'Irak (1980-1988) s'est aussi jouée sur le terrain du cinéma et AgnÚs Devictor analyse avec une grande finesse comment les « films du front » ont façonné le grand récit de cette guerre. Alors qu'on pourrait s'attendre à un alignement de cette production cinématographique sur la propagande étatique et bien que celle-ci ait effectivement contribué à la mobilisation et à l'acceptation du conflit, l'auteur éclaire et interroge la diversité des maniÚres de raconter et de..
    • 

    corecore