257 research outputs found

    PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition

    Get PDF
    SummaryPIK3CA, which encodes the p110α subunit of PI3K, is frequently mutated and oncogenic in breast cancer. PI3Kα inhibitors are in clinical development and despite promising early clinical activity, intrinsic resistance is frequent among patients. We have previously reported that residual downstream mTORC1 activity upon treatment with PI3Kα inhibitors drives resistance to these agents. However, the mechanism underlying this phenotype is not fully understood. Here we show that in cancer cells resistant to PI3Kα inhibition, PDK1 blockade restores sensitivity to these therapies. SGK1, which is activated by PDK1, contributes to the maintenance of residual mTORC1 activity through direct phosphorylation and inhibition of TSC2. Targeting either PDK1 or SGK1 prevents mTORC1 activation, restoring the antitumoral effects of PI3Kα inhibition in resistant cells

    Adrenal-permissive HSD3B1 genetic inheritance and risk of estrogen-driven postmenopausal breast cancer.

    Get PDF
    BACKGROUNDGenetics of estrogen synthesis and breast cancer risk has been elusive. The 1245A→C missense-encoding polymorphism in HSD3B1, which is common in White populations, is functionally adrenal permissive and increases synthesis of the aromatase substrate androstenedione. We hypothesized that homozygous inheritance of the adrenal-permissive HSD3B1(1245C) is associated with postmenopausal estrogen receptor-positive (ER-positive) breast cancer.METHODSA prospective study of postmenopausal ER-driven breast cancer was done for determination of HSD3B1 and circulating steroids. Validation was performed in 2 other cohorts. Adrenal-permissive genotype frequency was compared between postmenopausal ER-positive breast cancer, the general population, and postmenopausal ER-negative breast cancer.RESULTSProspective and validation studies had 157 and 538 patients, respectively, for the primary analysis of genotype frequency by ER status in White female breast cancer patients who were postmenopausal at diagnosis. The adrenal-permissive genotype frequency in postmenopausal White women with estrogen-driven breast cancer in the prospective cohort was 17.5% (21/120) compared with 5.4% (2/37) for ER-negative breast cancer (P = 0.108) and 9.6% (429/4451) in the general population (P = 0.0077). Adrenal-permissive genotype frequency for estrogen-driven postmenopausal breast cancer was validated using Cambridge and The Cancer Genome Atlas data sets: 14.4% (56/389) compared with 6.0% (9/149) for ER-negative breast cancer (P = 0.007) and the general population (P = 0.005). Circulating androstenedione concentration was higher with the adrenal-permissive genotype (P = 0.03).CONCLUSIONAdrenal-permissive genotype is associated with estrogen-driven postmenopausal breast cancer. These findings link genetic inheritance of endogenous estrogen exposure to estrogen-driven breast cancer.FUNDINGNational Cancer Institute, NIH (R01CA236780, R01CA172382, and P30-CA008748); and Prostate Cancer Foundation Challenge Award

    TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT.

    Get PDF
    Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells

    Narratives for drug design

    Get PDF
    We explore the role of narratives of complex systems in anti-cancer drug design. We set out the value of narratives relating to cancer in promoting awareness of risky behaviour and in supporting decision-making regarding treatment options. We present cancer as a dysregulated, complex system that has emergent behaviours at multiple scales, and is governed by dynamical spatio-temporal processes. We show that this system changes structure and function in response to anti-cancer drugs, and explain that these changes are sufficiently complex to impede effective drug design. We pose what narrative might offer to support the process of drug design, providing an example of work done to date that might serve as a foundation for narrating complexity. We suggest ways of using this work combined with that of others to begin to consider narrating drug design

    PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer

    Get PDF
    There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation

    ERα-LBD, an isoform of estrogen receptor alpha, promotes breast cancer proliferation and endocrine resistance

    Get PDF
    Estrogen receptor alpha (ER alpha) drives mammary gland development and breast cancer (BC) growth through an evolutionarily conserved linkage of DNA binding and hormone activation functions. Therapeutic targeting of the hormone binding pocket is a widely utilized and successful strategy for breast cancer prevention and treatment. However, resistance to this endocrine therapy is frequently encountered and may occur through bypass or reactivation of ER-regulated transcriptional programs. We now identify the induction of an ER alpha isoform, ER alpha-LBD, that is encoded by an alternative ESR1 transcript and lacks the activation function and DNA binding domains. Despite lacking the transcriptional activity, ER alpha-LBD is found to promote breast cancer growth and resistance to the ER alpha antagonist fulvestrant. ER alpha-LBD is predominantly localized to the cytoplasm and mitochondria of BC cells and leads to enhanced glycolysis, respiration and stem-like features. Intriguingly, ER alpha-LBD expression and function does not appear to be restricted to cancers that express full length ER alpha but also promotes growth of triple-negative breast cancers and ER alpha-LBD transcript (ESR1-LBD) is also present in BC samples from both ER alpha(+) and ER alpha(-) human tumors. These findings point to ER alpha-LBD as a potential mediator of breast cancer progression and therapy resistance

    A Computational Assay of Estrogen Receptor alpha Antagonists Reveals the Key Common Structural Traits of Drugs Effectively Fighting Refractory Breast Cancers

    Get PDF
    Somatic mutations of the Estrogen Receptor alpha (ER alpha) occur with an up to 40% incidence in ER sensitive breast cancer (BC) patients undergoing prolonged endocrine treatments. These polymorphisms are implicated in acquired resistance, disease relapse, and increased mortality rates, hence representing a current major clinical challenge. Here, multi-microseconds (12.5 mu s) molecular dynamics simulations revealed that recurrent ER alpha. polymorphisms (i.e. L536Q, Y5375, Y537N, D538G) (mER alpha) are constitutively active in their apo form and that they prompt the selection of an agonist (active)-like conformation even upon antagonists binding. Interestingly, our simulations rationalize, for thefirst time, the efficacy profile of (pre)clinically used Selective Estrogen Receptor Modulators/Downregulators (SERMs/SERDs) against these variants, enlightening, at atomistic level of detail, the key common structural traits needed by drugs able to effectively fight refractory BC types. This knowledge represents a key advancement for mechanism-based therapeutics targeting resistant ER alpha isoforms, potentially allowing the community to move a step closer to 'precision medicine' calibrated on patients' genetic profiles and disease progression

    Heat Shock Protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat shock proteins (HSPs) are ubiquitous, highly conserved proteins across all the species and play essential roles in maintaining protein stability within the cells under normal conditions, while preventing stress-induced cellular damage. HSPs were also overexpressed in various types of cancer, being associated with tumor cell proliferation, differentiation and apoptosis. The aim of the present study was to evaluate the clinical significance of HSP -27, -60, and -90 expression in gastric carcinoma.</p> <p>Methods</p> <p>HSP -27, -60, and -90 proteins expression was assessed immunohistochemically in tumoral samples of 66 gastric adenocarcinoma patients and was statistically analyzed in relation to various clinicopathological characteristics, tumor proliferative capacity and patients' survival.</p> <p>Results</p> <p>HSP-27, -60, -90 proteins were abundantly expressed in gastric adenocarcinoma cases examined. HSP-27 expression was significantly associated with tumor size (pT, P = 0.026), the presence of organ metastases (pM, P = 0.046) and pStage (P = 0.041), while HSP-27 staining intensity with nodal status (pN, P = 0.042). HSP-60 expression was significantly associated with patients' sex (P = 0.011), while HSP-60 staining intensity with patients' age (P = 0.027) and tumor histopathological grade (P = 0.031). HSP-90 expression was not associated with any of the clinicopathological parameters examined; however, HSP-90 staining intensity was significantly associated with tumor size (pT, P = 0.020). High HSP-90 expression was significantly associated with longer overall survival times in univariate analysis (log-rank test, P = 0.033), being also identified as an independent prognostic factor in multivariate analysis (P = 0.026).</p> <p>Conclusion</p> <p>HSP-27, -60, and -90 were associated with certain clinicopathological parameters which are crucial for the management of gastric adenocarcinoma patient. HSP-90 expression may also be an independent prognostic indicator in gastric adenocarcinoma patients.</p

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
    corecore