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1 Narratives and cancer patients 

 

The management of patients with long-term conditions is one of the major 

challenges facing healthcare systems worldwide (United Nations General Assembly 

2013). A long-term condition is a condition for which there is no cure; rather, long-

term conditions must be managed through a range of treatment options including 

drugs (King’s Fund 2012). Long-term conditions include diabetes, hypertension, 

chronic kidney disease and cancer, and management accounts for a substantial 

proportion of health service resources. For example, in the UK long-term condition 

patients account for 30% of the patient population and 70% of the healthcare 

spend (Department of Health 2012). 

 

Patients living with long-term conditions play an important role in management of 

their condition, and Coulter et al. (2015) provide a comprehensive review of the 

role of personal care planning in the management of long-term conditions. They 

describe personal care planning as a “collaborative process used in chronic 

condition management in which patients and clinicians identify and discuss 

problems caused by or related to the patient’s condition, and develop a plan for 

tackling these” (Coulter et al. 2015). For personal care planning to be effective, 

patients must be supported in the difficult decisions they make in respect of 

lifestyle choices and treatment options. 

 

Cancer is one of the fastest rising long-term conditions (Department of Health 

2012). Cancer is one of the leading causes of death worldwide, with approximately 

8 million deaths recorded in 2012 and a 70% rise in new cases expected over the 

next 20 years (Stewart & Wild 2014). Narrative has been shown to have value in 

the prevention of cancer through effective communication of risk. Janssen et al. 

(2013) provide a useful review of narrative in healthcare, noting that “by providing 

vivid information about the antecedents and the consequences of a health 

problem, narrative health information improves the extent to which people are 

able to imagine themselves developing a certain disease, which in turn may 



influence their risk judgments” (Janssen et al. 2013). Their own study explored the 

effects of risk communication to regular sunbed users in narrative and non-

narrative forms. Results showed that, compared with non-narrative information 

forms, narrative information promoted an increased feeling of skin cancer risk with 

respect to sunbed use in participants, and participants could more readily image 

themselves developing skin cancer. 

 

Narration can also support patients when making decisions on treatment options. 

Shaffer et al. (2013) report on the effect of process-focused and experience-

focused narratives on the patient decision-making process. Process narratives are 

designed to “prime participants to follow a particular decision process …[and] 

would most commonly entail patients considering additional dimensions of the 

decision process that they might not have considered otherwise” Shaffer et al. 

(2013). Experience narratives are designed to “increase knowledge and the 

perceived ability to imagine future health states … [which] could result in increased 

decisional satisfaction and an improved ability to make affective forecasts (i.e. 

forecasts of future feelings)” Shaffer et al. (2013). Importantly, neither process or 

experience narratives are thought to bias healthcare decisions, but to promote 

consideration of a broader set of issues than they might have otherwise or 

improve understanding of treatment outcome respectively. Focusing on breast 

cancer treatment decisions, and through a carefully designed test with control 

conditions, results of the study revealed that participants exposed to process-

focused narratives spent more time searching for information relating to key 

aspects of treatment that were discussed in the narratives. Participants exposed to 

experience-focused narratives were more confident in and satisfied with their 

treatment decisions. 

 

We propose that narrative can also inform clinicians’ understanding of cancer. We 

base this proposition on the following observations: 1) cancer is a complex system; 

2) effective drug design depends on understanding that complex system; and 3) 

narratives can inform our understanding of complex systems. The remainder of 

this chapter explores this proposition by unpacking these three observations in 

turn. 

 

Section 2 considers cancer as a complex system. We unpack some of the 

complexities associated with cancer as a system of interacting cells in the context 

of normal tissue. We pay particular attention to one level of functioning in cancer 

cells – that of the intracellular signalling network that represents the biochemical 

interactions among different species in the cell. It is these biochemical interactions 

that ultimately dictate cell fate. 

 

Section 3 explores this signalling network in the context of anti-cancer drug 

targets. Because of their role in cell fate, some signalling network components 



provide potentially useful drug targets for anti-cancer therapy. However, these 

drug targets are situated in the context of a topologically complex and dynamic 

network, and we consider how anti-cancer drugs seek to restore normal 

functioning in cell signalling networks and explore how therapy design is impeded 

by the complexity of the cellular system. 

 

Section 4 sets out what narrative might offer to support the process of drug 

design, both providing an example of work done to date that might serve as a 

foundation for narrating complexity and speculating on the contribution of 

narrative to anti-cancer treatment.  In Conclusion we suggest possible ways of 

using this work combined with that of others to begin to consider narrating drug 

design. 

 

 

2 Cancer as a complex system 

 

Cancer is not a single disease; it is a broad class of diseases of over 200 types 

(Cancer Research UK 2016), characterised by functional dysregulations within and 

surrounding affected cells, tissues and organs (Bown et al. 2012) as outlined in 

subsequent sections. Cancer originates from the aberrant behaviour of a single cell 

or region of cells that over time gives rise to an observable anomalous tissue 

structure in the form of a tumour, and can progress to non-local spread through 

the blood stream or lymphatic system. 

 

Cancer is therefore an emergent system where local (cell) scale processes lead to 

system-scale patterns in local cell populations, tissue structures, organs and 

ultimately in the body as a whole. As explored below, those tissue patterns in turn 

impact cellular processes. Moreover, there is increasing awareness of the 

heterogeneities in cancer: tumours comprise multiple cell types; patterning in 

tissue is likewise heterogeneous. That cancer is emergent at multiple scales and 

highly heterogeneous makes treatment very challenging. 

 

In 2000, Hanahan and Weinburg (2000) set out six biological hallmarks of cancer 

that have helped frame investigations and interpretation of findings. Here, these 

hallmarks are only briefly outlined and indeed greatly simplified since they provide 

a contextual backdrop to the challenge of drug design. Hanahan and Weinburg 

(2000) provide a rich description of all six hallmarks for the interested reader. 

 

Normal cells regulate the processes of growth and division and pre-programmed 

cell death, responding to spatially and temporally structured external signals that 

cue the cell to grow and information on mechanical stresses from the environment 

and from other cells (note there are a wide range of other factors involved). In 

effect, external signals are read in through receptors on the cell wall and 



processed by the cell to drive behaviour. This cellular processing enables tissue to 

maintain consistent and properly functioning structures. 

 

Cancer arises from perturbations in the processing of these signals, and such 

perturbations can lead to cells that are not well regulated by external stimuli. This 

dysregulation can confer cells with the six hallmarks of cancer: 

- Increased proliferation, where cells divide far more frequently than they 

should; 

- Unsuppressed growth, where cancer cells can grow in structural forms 

inconsistent with normal tissue (e.g. where mechanical pressures are larger);  

- Resistance to cell death, a natural and pre-programmed mechanism to 

promote cell turnover and maintain a healthy population of cells; 

- Replicative immortality, through a combination of the above three 

hallmarks and through changes in the mechanisms cells use to control the 

number of possible divisions; 

- Sustained angiogenesis, meaning that cancerous tissue can encourage 

development of structures able to supply oxygen and nutrients; 

- Invasion and metastasis, where tumour masses can move into adjacent 

tissue and into distant regions by changing the physical coupling of cancer 

cells to their microenvironment. 

 

Tumours thus originate from and are sustained by dysregulations within the signal 

processing within the cell, which confer on that cell particular ecological and 

evolutionary advantages. The resulting pattern at the tissue scale is the emerging 

tumour of cancer cells in the environmental context of normal tissue. An important 

observation is that cross-scale feedback occurs through competition for resource 

and space. Resource competition occurs because there is limited oxygen and 

nutrients yet there are increasingly more cells in the developing cancerous tissue 

structure. This growth is occurring in a limited space and the mechanical stresses 

on cells caused by too much growth in too little space are converted into 

biochemical signals and can actually promote further signal transduction and these 

stresses drive proliferation over time (see Jaalouk and Lammerding 2009 for a 

review). 

 

Kreeger and Lauffenburger (2009) provide an excellent review on the challenges 

posed when trying to unravel both the origins and consequences of such 

dysregulation in cancer cells. A key observation is that cell behaviour is controlled 

by a mix of genetic alterations and environmental context, and that the “greatest 

amount of information concerning phenotypic behaviour resides in the realm 

comprehending both genomic and environmental effects: dynamic protein 

network operations” (Kreeger and Lauffenburger 2009). 

 



These protein networks, or signalling networks, provide a mechanistic connection 

between external signals received at the cell surface and the cell nucleus (Cooper 

2000). These signalling networks represent the biochemical species that interact to 

form new compounds in order to process external signals. The nodes in the 

network represent the compounds that are formed and broken down in space 

over time as the cell processes extracellular signals and it is the result of this 

processes that drives the behaviour of the cell. 

 

Signals propagate through these networks and cancerous behaviours, i.e. the 

hallmarks, are often associated with measurable differences in the proteins that 

make up these pathways. Accordingly, amongst the myriad of levels of 

organisation of cellular, tissue and environmental factors, signalling networks are a 

promising route for drug design. However, signalling networks attract complexities 

in of themselves. 

 

 

3 Signalling networks and anti-cancer drug design 

 

As noted above, signalling networks transduct external stimuli, including growth 

factors and anti-cancer drugs, for processing by the cell nucleus. Importantly, 

these networks do not operate in isolation; networks are interconnected and this 

complicates their study. 

 

Figure 1 (from Hu et al. 2013) is illustrative of such a network, and shows two key, 

interconnected signalling pathways that are implicated in some of the hallmarks of 

cancer: pre-programmed cell death, cell proliferation and cell growth. These 

pathways are regulated by growth factor receptors (HER2 and HER3 in Figure 1). 

These two receptors regulate signalling in the PI3K/PTEN/AKT and 

Ras/Raf/MEK/ERK pathways that control cell survival, growth and proliferation. The 

details of the molecular species that comprise this network are beyond the scope 

of this Chapter. Important here are several topological features that give rise to 

complex, emergent behaviours. Note these features are a defining property of 

many signalling networks in biological sciences (Bown et al. 2012) – complexity 

arising from network topology is prevalent and not limited to this exemplar 

network or indeed to cancer. 

 



 
 

Figure 1: Cellular signalling pathways (reproduced from Hu et al. 2013). The two 

pathways RAF/MEK/ERK (left hand side) and PI3K/PTEN/AKT (right hand side) are 

interconnected by element PP2A. RM1 shows a feedback loop. Additional cross-

talk is shown by RM3 and RM4. Numbers refer to the underlying equation set (see 

discussion on interactive media below). 

 

Figure 1 shows pathway cross-talk and feedback loops, within and between 

networks. Cross-talk is shown towards the centre of the network by the PP2A 

enzyme, a known regulator of a wide range of cellular processes. This enzyme is 

connected to the AKT-PIP3 complex, which drives cell survival and growth, and the 

MEK complex, implicated in cell proliferation and differentiation among other 

processes. A cell has a limited amount of PP2A at any one time and in this 

particular cross-talk example, an increase in signalling activity in one pathway that 

interacts with this limited amount of PP2A causes an inhibition of signalling activity 

in the other pathway. Cross-activation, rather than the cross-inhibition shown here, 

is also observed in other pathways. 

 

Signalling is further complicated by the feedback loops shown in the network 

(Figure 1, dotted lines). Feedback loops are another pervasive feature of biological 

networks. Feedback loops have a regulatory role in such networks, helping to keep 



some intracellular conditions constant in the face of any perturbation. This network 

describes oscillations in AKT and ERK signalling pathway outputs, and these 

oscillations can be controlled by varying the strengths of the feedback loops in the 

networks. 

 

These topological complexities on the one hand provide signalling networks with 

marked robustness to external stimuli, maintaining proper functioning in the face 

of noisy inputs, yet on the other hand confer exquisite sensitivity to key variations 

in those inputs. Accordingly, networks can be either sensitive or resistant to small 

changes in input signals: sensitivity means that small, localised changes can have a 

pronounced impact on non-local network functioning; resistance means that 

network functioning is resilient to such change. 

 

This emergent phenomenon has implications in anti-cancer drug design (see 

below) but also in cancer-associated mutations. Figure 2 (from Goltsov et al. 2014) 

shows the impact of a cancer-associated mutation on network sensitivity in the 

form of a heatmap. The heatmap shows the sensitivity of 19 different entities in the 

signalling network, where light grey indicates high sensitivity and dark grey 

indicates low sensitivity, i.e. resistance. In normal functioning (Column 1 in Figure 

2), the network sensitivity heatmap is mainly mid to light grey, indicating a network 

that is sensitive to change but not dramatically so. Mutations can be introduced 

into the model to represent biological mutations in the cell. One single mutation in 

a key network node results in a network that is largely insensitive to change 

(Column 3 in Figure 2 is mainly dark grey and black), i.e. a local change results in a 

marked non-local change in sensitivity. 

 

 
 



Figure 2: Heatmap of sensitivity of different entities in the signalling network 

(adapted from Goltsov et al. 2014). Column 1 shows the network in normal 

functioning, and when an anti-cancer drug is applied the network increases in 

overall sensitivity (Column 2). When a cancer-associated mutation is introduced 

the network is insensitive without or with the anti-cancer drug (Columns 3 and 4 

respectively). The addition of a second drug in combination with the first (Columns 

5-8) restores sensitivity to the anti-cancer drug (Column 8).  

 

To complicate cellular signalling further still, there is an increasing awareness that 

the network topology itself is not fixed (Lee et al. 2012). The network topology 

represents the interactions among different species in the cell, and the network 

changes in structure over time. These changes occur because different parts of the 

network interconnect and disconnect as the cell responds to acquired mutations 

and significant changes to external stimuli such as anti-cancer drug treatments. For 

example a cell can become resistant to the effect of a drug through these 

changes. 

 

Anti-cancer drug treatments are typically in the form of a “targeted cancer 

therapy”, a kind of therapy that is designed to disrupt aberrant behaviour in 

cellular signalling networks, either in an effort to restore normal functioning or to 

at least suppress cancerous behaviours in cells, by targeting a particular node in 

the network. Drugs are typically designed in a single-target-single-drug paradigm 

(Medina-Franco et al. 2013), i.e. a drug is designed to target a specific site in a 

network. However, single therapies have had only limited success (Singer et al. 

2008), with patients either failing to respond at all or developing resistance to the 

drug effect over time. 

 

This is, in part, because the single therapies are acting in the context of a range of 

mechanisms that compensate for and adapt to perturbations (here, drug action): 

these mechanisms include cross-talk, feedback loops, differential sensitivities to 

change across the network and changes in network structure in response to drug 

action. This means that targeted therapies can impact beyond their point of 

application, and often in ways that are difficult to anticipate (Bown et al. 2016). 

These features then limit efficacy of any single therapy, and patient resistance to a 

drug is a key challenge in anti-cancer therapy design. 

 

There is increasing evidence from both in vitro and in vivo studies that 

combination therapy, i.e. therapy comprising more than one drug and so target 

more than one site in the network, is a promising route to overcome the challenge 

of drug resistance. This evidence base is growing continually (Chandarlapaty 2012; 

Chong and Jänne  

2013) but typically the way in which the drugs work together to deliver improved 

performance is not well understood (Goltsov et al. 2014). The rational design of 



combination therapy depends on a mechanistic understanding of those networks 

in terms of the individual components and the way in which those components 

interact, locally and non-locally. Rational design needs ways of integrating, often 

fragmented, data that together reflects the system as a whole, or at least some 

representative subset of that system, and of interpreting the results of that 

integration. 

 

The complexity of that integration provides an opportunity for computational 

models. Models can identify signalling network states that confer drug resistance 

or sensitivity and shed light on how to manage the transition from one state to the 

other through combination therapy e.g. (Goltsov et al. 2012), and propose 

mechanisms of combination therapy action to explain why in a model of drugs 

binding to signalling network nodes two drugs that are applied individually are 

ineffective yet when applied in combination and at the same time are effective in 

overcoming drug resistance (Kholodenko 2015). Thus models can contribute to 

rational drug design and in doing so help us understand signalling pathway 

complexities. 

 

This opportunity is, however, impeded by the computational – biological discipline 

divide. Biologists and clinicians readily understand simple models, but simple 

models cannot deliver value in the face of the complexities noted above. Models 

that represent sufficient complexity to help understand a signalling network can be 

challenging for biologists to first formulate and then interpret (Janes and 

Lauffenburger 2013). Janes and Lauffenburger (2013) provide a review of the value 

of such signalling network models for experimental cell biology. They highlight that 

key barriers are confusions relating to the purpose of the model, predictions from 

the model and the wide range of modelling approaches available. The purpose 

should be to – try to – explain specific phenomena observed in experimentation; 

predictions made are often in the context of assumptions especially relating to 

gaps in knowledge for parameters; the selected approach needs to take account 

of the purpose and the available knowledge. Indeed, our own work on CoSMoS 

(Stepney et al. 2011) provides a framework to address exactly these barriers. 

 

Going beyond this computational – biological discipline divide, the complexities in 

signalling networks run deeper than topology. Nodes, and combinations of nodes, 

in the network serve as switches, integrators and inhibitors, and the specific 

function of any given node or sub-network can be variable, contextualised by its 

inputs in a non-linear manner. Thus, non-linear components operate with variable 

function in complex networks. It then becomes impossible to describe system 

behaviour in linear and simple narrative. In fact, it has been suggested that rather 

than a node-centric view, it is likely that the dynamic features of the network itself 

might form the basis of drug targets rather than the network components (Behar 

et al. 2013). 



 

 

4 Towards narratives for anti-cancer drug design 

 

We have so far established the following: 

- Cancer is a complex system driven in part by aberrant cellular function; 

- Signalling networks are a useful level of detail at which to study cellular 

function, and are themselves complex; 

- Parts of those signalling networks can be targeted by anti-cancer drug 

therapies to seek to restore aberrant functioning; 

- The signalling network is dynamic in its reaction to drugs and mutations, 

and its structure can change over time; 

- Computational models can support our understanding of cell responses to 

drug action, including the various mechanisms of drug resistance; 

- Computational models that are of sufficient detail to represent mechanisms 

of resistance can be prohibitively complex for biologists. 

 

Here, we describe briefly an interactive visualisation technology that could provide 

the foundations for narratives. The use of data storytelling to communicate and 

stimulate insights is a growing research area (Bach et al. 2016). Segel and Heer 

(2010) provide a systematic review of work seeking to combine narrative and 

interactive visualisations, and note that while sophisticated visualisation tools might 

provide powerful vehicles for discovering stories narrative communication depends 

on more than visualisation.  

 

Boy et al. (2015) distinguish between two types of information visualisations: 

explanatory and exploratory. Explanatory information visualisations are common in 

journalistic contexts, are typically used to support the narrative presented in the 

text, and have limited interactivity. Segel and Heer (2010) categorise such 

explanatory information visualisations as author-driven. In contrast, exploratory 

information visualisations require a reader-driven approach with free interactivity 

(Boy et al. 2015), and are motivated by provoking discoveries in the patterns of 

data. 

 

We propose that our technology is a vehicle to support reader-driven narratives, 

but is not in of itself a narrative. This technology, SiViT (Bown et al. 2016), turns a 

complex model into an interactive animation, allowing the cancer specialist 

intuitive access to complex systems models otherwise inaccessible. SiViT is able to 

represent graphically the network structure of models of cell signalling, such as 

that described in Figure 1. The models encapsulate a system of differential 

equations and SiViT computes these equations and animates a simulation of the 

model the system dynamics. Thus SiViT provides a ‘movie’ of the simulation, 



showing the whole system behaviour. Moreover, each node in the network can be 

queried and a pop-up graph of node activity over time presented.  

 

This is a useful contribution in respect of validation: all models depend on a set of 

assumptions and these assumptions can be difficult to elicit, especially in the case 

of complex systems models. Modelling frameworks such as CoSMoS (Bown et al. 

2012) have found ways of explicating and then challenging the assumption set 

underpinning a complex systems model and its simulation. SiViT provides a 

complementary explication: simulation dynamics are animated in the hope that 

major departures in the model (or indeed simulation) formulation are identified. 

 

Crucially, SiViT also allows the user to add in and then visualise the effects of 

cancer-causing mutations and anti-cancer drugs. Mutations associated with drug 

resistance can be introduced by changing simulation parameters through another 

drop down menu. Drugs can be added in through a drop-down menu, at a 

prescribed dosage at a particular time. Combinations of drugs can be added to 

explore the effects of different doses and of dose sequencing. These combinations 

can be drawn from a known set of drugs. Alternatively, new drugs can be 

designed by changing simulation parameters directly to simulate the effect of that 

designed drug. 

 

Any simulation configuration, in terms of drugs and mutations can be compared 

with another (one) simulation configuration. In pairwise comparisons, the two 

configurations are defined as Control and Experiment and the visualisation is a mix 

of red, blue and white. The colour of each node and edge component is set by 

whether the value of the Control component is greater than, less than or equal to 

the value of the corresponding component in the Experiment, with colour intensity 

proportional to this difference. Figure 3 shows a signaling network visualisation 

using SiViT. 

 



 
 

Figure 3: a signaling network visualisation with a pop-up dialogue box (Inset 1, 

bottom right) for amending drug regime and mutational status together with an 

inset with magnified detail (Inset 2, bottom left) taken from Bown et al. (2016). See 

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=

article&op=view&path%5B%5D=8747 for figures and related movies. 

 

 

Figure 4 shows a typical set of SiViT visualisations. The network is that of the 

PI3K/PTEN/AKT and RAF/MEK/ERK pathways shown in Figure 1 (except for the 

sub-network of Figure 1 below the ERK—pERK—ppERK interactions). Figure 4A 

and 4B show the effect of an anti-cancer drug after 1 minute and 10 minutes 

respectively. Figure 4A shows an immediate and substantial down-regulation of 

signalling since most of the network is blue. By 10 minutes, we observe differences 

in pathway dynamics: in Figure 4B the lower pathway is still down-regulated and 

the upper pathway has similar levels of signalling to the network without the drug, 

i.e. the Control condition, since much of this pathway is white. Thus, the overall 

signalling activity in this upper pathway is the same but signalling dynamics are 

slowed by the drug action – a different dynamic to that of the lower pathway. 

Areas in red show non-local, emergent phenomena: red areas represent 

accumulations of species concentrations as a result of drug action inhibiting nodes 

elsewhere in the pathway network.  

 

Figure 4C shows a network with a cancer-causing mutation introduced at a single 

point. This single point mutation has a marked effect on whole network 

functioning, where at the end of the 10-minute time-course the inhibitor has a far 

weaker effect in reducing signalling. Figure 4D depicts the state of the network 

after the use of combination therapy to restore network sensitivity to the drug. The 

resistant network with combination therapy shown in Figure 4D is very similar to 

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=8747
http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=8747


the sensitive (normal) network with single therapy in Figure 4B in respect of the 

overall pattern of signalling. 

 

Note, the white insets show key biological indicators of signalling activity in the 

Control (black line) and Experiment (blue line) simulation conditions. In Figures 4A, 

4C and 4D the insets show AKT levels – a key regulator of cell survival, growth and 

proliferation. The intended drug action is to reduce the amount of active AKT in 

the network. In Figure 4A levels of inactive AKT are increased following drug action 

as expected; in the resistant network of Figure 4C inactive AKT is decreased. In 

Figure 4D, SiViT was used to determine the minimum dose to match the key 

biological indicator (AKT) as shown in the overlapping blue and black lines of the 

pop-up inset. 

 

Beyond this representation, the observer is currently left to construct an 

interpretation of the system dynamics by integrating the observed individual 

components; the task is of course easier than such inference from the equation set 

or graph-based time-series readouts. Additional layers of abstraction and 

perspectives could add to the explanatory power of simulation results. 

 



 
 

Figure 4: SiViT visualisations of cell signalling (adapted from Bown et al. 2016). 

Figure 3A and 3B show the effect of an anti-cancer drug after 1 minute and 10 

minutes respectively. Figure 3C shows a network with a cancer-causing mutation 

introduced at a single point. Figure 3D shows the same network as Figure 3C but 

with combination therapy to overcome resistance. See 

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=

article&op=view&path%5B%5D=8747 for figures and related movies. 

 

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=8747
http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=8747


 

 

5 Conclusion 

 

SiViT can reveal system dynamics in a literal sense. A key limitation of many 

information visualisation systems identified by (Lee et al. 2015) is that there is no 

provision for the “making of a story”. Where visualisations cue key events in the 

system dynamics, or story pieces, it is down to the user to extract and organise 

meaningfully those story pieces without support from the visualisation system (Lee 

et al. 2015). Additionally, visualisations are not typically designed to highlight key 

events, including system changes in functioning and – here – the invocation of 

compensatory mechanisms of feedback. 

 

For signalling networks, in the light of increasing understanding of the limitations 

of drug design targeting single nodes in the face of topological changes in 

signalling network architecture, Behar et al. (2013) propose that signalling hub 

topology, and crucially the response of that topology to differing signalling 

pathway inputs i.e. drugs, has utility in advancing anti-cancer therapy. In Behar et 

al. (2013) the network is viewed in terms of sub-networks that provide dynamical 

mapping of inputs to outputs; interventions (drugs) are viewed in terms of their 

impact on that mapping. They combine this concept with that of a network motif 

(Wong et al. 2011), where a motif is a particular configuration of nodes in a sub-

network that is observed regularly and pervasively in a range of biological systems. 

Motifs include switches, feedback loops, feed-forward loops and integrators. Behar 

et al. (2013) suggest that signalling networks either exhibit these motifs explicitly or 

may be abstracted into such a motif based on the observed dynamics of that sub-

network. In taking this view the network, or at least sub-networks, in addition to 

the pathway nodes, has agency. Moreover, motifs and changes in network or sub-

network topology may well represent key story pieces. 

 

Thus any interactive, visual account of cell signalling in response to drugs needs to 

reveal both node and sub-network dynamics, in an integrated and concurrent 

manner. System-scale dynamics must be portrayed such that conformational 

changes in sub-networks, such as from e.g. a feedback into a feed-forward loop, 

are depicted concurrently with up- and down-regulation of nodes, and 

importantly how the two are connected. This interconnection is likely to be non-

linear and context-sensitive: we must explore the use of concurrent accounts of 

signalling at different spatial and temporal scales to reveal this link, with key events 

in each account being cross-linked to reveal how one impacts the other. 

 

This dynamic representation of signalling network dynamics requires 

communication via video, and while highlighting important events is not readily 

translated into a narrative form. New work by Bach et al. (2016) provides a thought 



provoking first study on the use of the well-established and visually rich medium of 

comics to tell stories about dynamic networks. Bach et al. (2016) note that comics 

are already used to convey information beyond entertainment in order to inform 

and educate in an engaging way. They founded their notational design on good 

practice in the existing domain of graphic comics and tested the effectiveness of 

designed comics to convey network changes over time. The results confirmed that 

with minimal textual cueing the intended dynamics were successfully conveyed. 

 

While the comics used in this study are not as complex as required to represent 

signalling network dynamics, we believe that this work, combined with our own 

interactive and executable visualisation technology, provides a first hint towards 

the narrating of cellular signalling networks. In principle, and with some user 

direction, key switches in behaviour driven by drug action and mutation identified 

via SiViT could be pushed out to a comic format with panels showing key states 

and alternate pathways in time. The comic would then architect the key story 

pieces, and events leading to marked changes in signalling network functioning, 

into a narrative underpinned by the more detailed SiViT visualisation. This would 

both aid understanding of signalling network dynamics and, crucially, improve 

reporting in linear reporting media and in particular scientific journals.  
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