439 research outputs found

    Wavelength-dependent spatial variation in the reflectance of 'homogeneous' ground calibration targets (Paper presented at XIX ISPRS Congress, 16-22 July, 2000, Amsterdam, The Netherlands)

    No full text
    Remotely sensed data are most useful if calibrated to spectral reflectance of known features. One simple method of calibration is regression of remote data on the reflectance of several ground targets as measured in the field, the so called empirical line method (ELM). The ideal situation would be one where a range of ground targets representing all the features of interest in the remote image were available for ground measurements (Lawless et al., 1998). The identification of suitable ground targets is constrained by several limitations, such as their size (to minimise edge effects), their absolute reflectance (to represent spectral characteristics of the image) and their effective spatial variability (to extract reflectance characteristics representative of the target). The size of a ground target is dependent on the spatial resolution of the image that must be calibrated (Justice & Townshend, 1981) and the number of observations needed to represent features in the image has been suggested to depend upon the spatial resolution of the remotely sensed image (Justice & Townshend, 1981) and on the spatial variability of the ground target (Harlan et al., 1979; Curran & Williamson, 1986). Although ground targets used for calibration should be spectrally “bland” and spatially uniform by definition (Clark et al., 1999), it is sometimes very difficult to find such places available for calibrating remotely sensed images. When surfaces that apparently satisfy these conditions are available in suitable size, their sampling needs to be designed to optimise representation of the whole surface and available resources (e.g., effort and time). Surfaces that look spatially uniform by eye may actually contain spatial variation, and this spatial variation may depends on wavelength (Atkinson & Emery, 1999). Such variability can be detected using geostatistics, which is concerned with issues such as spatial correlation and analyses of spatial data. Geostatistical tools have been used in a variety of studies and the variogram has been applied in remote sensing and ecology to design optimal sampling strategies for variables sampled in space (Atkinson, 1991; Rossi et al., 1992) and time (Salvatori et al., 1999). This study investigates the spatial variability of potentially suitable ground calibration targets (GCT) using a geostatistical approach, which gives results that can be used to design optimal sampling strategies for such surfaces. The targets were selected from an area where an Itres Instruments Compact Airborne Spectral Imager (casi) with ground resolution of about 1.5 metres was flown at the same time as ground data were acquired

    Large seeds provide an intrinsic growth advantage that depends on leaf traits and root allocation

    Get PDF
    1. Seed mass and growth rate are important dimensions of plant ecological diversity, but their relationship remains unresolved. Negative relationships between RGR and seed mass are well-established. However, RGR is size dependent, so small-seeded species might achieve fast growth simply because they are initially small. 2. Using a dataset of unprecedented size, sampling 382 grass species, we investigated seed mass and growth rate using both RGR and SGR (RGR at a specific size), accounting for diversity in phylogeny, ecology (e.g. life history, photosynthetic pathway) and environment (mean annual temperature and precipitation). 3. RGR and SGR showed contrasting relationships with seed mass, such that large-seeded species had lower RGR but higher SGR than small-seeded species. However, the relationship between SGR and seed mass depended on leaf dry matter content (LDMC), and was only positive in high-LDMC species. When compared at a common size, the fast growth of large-seeded and low-LDMC species was associated with greater biomass allocation to roots in the hot, high-light environment used for our experiment. Photosynthetic pathway and life history contributed to variation in SGR, with C4 annuals having higher SGRs than C3 perennials regardless of seed size. 4. Large seeds therefore afford an intrinsic growth advantage in species with resource-conserving leaf traits, and may provide a competitive edge in resource-poor environments. This work advances the understanding of how seed mass and growth rate co-evolve with other ecological factors

    Non-western contexts: the invisible half

    Get PDF
    Like many other disciplines within the broad area of social sciences (e.g., anthropology, gender studies, psychology, sociology, etc.), consumer research is also highly navigated by scholars from Western countries. This, however, does not mean, by any means, that consumer research is devoted to studying Western contexts only. As evident from the ever-increasing number of regional conferences (e.g., Asia-Pacific and Latin American conferences of the Association for Consumer Research) and non-Western students' enrolment in doctoral programs at Western universities, there are many more researchers (from non-Western countries) who are entering the field and enriching it by their colourful contributions. Yet, given the low number of publications on consumer research in non-Western contexts, it seems that our current knowledge in these societies has a long way to go to flourish. More specifically, and in the domain of consumption culture research, this gap is even further widened by the fact that the culture of consumption in such contexts is largely interpreted with reference to the 'grand narratives' of Western scholars (e.g., Foucault, Mafessoli, Bourdieu, Deleuze, Baudrillard, Nietzsche, Durkheim, Derrida, etc.). Therefore, from an ontological perspective, it seems that our existing knowledge about non-Western societies lies heavily on the 'theoretical structures' that are 'constructed' by Western philosophy as a set of ideas, beliefs, and practices (Said, 1978). As Belk (1995) reminds us, consumption culture always existed in all human societies. What makes contemporary societies different from that of our predecessors' is not the fact that consumption culture did not exist in those societies, but that consumption culture has become a prevailing feature in modern society (Slater, 1997; Lury, 1996; Fırat and Venkatesh, 1995; McCracken, 1988). Therefore, the nature and dynamics of consumption culture in each society should be studied not only against the sociocultural, historical, and economic background of a given context (Western or non-Western) but also with reference to the philosophical and epistemological viewpoints that analyse and interpret cultural practices of that society from within that culture. Addressing such issues, this paper discusses some of the key reasons for lack of theory development in the field from non-western contexts. The paper invites scholars in non-Western contexts to introduce the less articulated, and sometime hidden, body of knowledge from their own contexts into the field of marketing in general and consumer research in particular

    C4 photosynthesis and the economic spectra of leaf and root traits independently influence growth rates in grasses

    Get PDF
    1. Photosynthetic pathway is an important cause of growth rate variation between species, such that the enhanced carbon uptake of C4 species leads to faster growth than their C3 counterparts. Leaf traits that promote rapid resource acquisition may further enhance the growth capacity of C4 species. However, how root economic traits interact with leaf traits, and the different growth strategies adopted by plants with C3 and C4 photosynthetic pathways is unclear. Plant economic traits could interact with, or act independently of, photosynthetic pathway in influencing growth rate, or C3 and C4 species could segregate out along a common growth rate‐trait relationship. 2. We measured leaf and root traits on 100+ grass species grown from seeds in a controlled, common environment to compare with relative growth rates (RGR) during the initial phase of rapid growth, controlling for phylogeny and allometric effects. 3. Photosynthetic pathway acts independently to leaf and root functional traits in causing fast growth. Using C4 photosynthesis, plants can achieve faster growth than their C3 counterparts (by an average 0.04 g g‐1 day‐1) for a given suite of functional trait values, with lower investments of leaf and root nitrogen. Leaf and root traits had an additive effect on RGR, with plants achieving fast growth by possessing resource‐acquisitive leaf traits (high specific leaf area and low leaf dry matter content) or root traits (high specific root length and area, and low root diameter), but having both leads to an even faster growth rate (by up to 0.06 g g‐1 day‐1). C4 photosynthesis can provide a greater relative increase in RGR for plants with a ‘slow’ ecological strategy than in those with fast growth. However, aboveground and belowground strategies are not coordinated, so that species can have any combination of ‘slow’ or ‘fast’ leaf and root traits. 4. Synthesis: C4 photosynthesis increases growth rate for a given combination of economic traits, and significantly alters plant nitrogen economy in the leaves and roots. However, leaf and root economic traits act independently to further enhance growth. The fast growth of C4 grasses promotes a competitive advantage under hot, sunny conditions

    A basin- to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana

    Get PDF
    Southern Louisiana is characterized by low-lying topography and an extensive network of sounds, bays, marshes, lakes, rivers, and inlets that permit widespread inundation during hurricanes. A basin- to channel-scale implementation of the Advanced Circulation (ADCIRC) unstructured grid hydrodynamic model has been developed that accurately simulates hurricane storm surge, tides, and river flow in this complex region. This is accomplished by defining a domain and computational resolution appropriate for the relevant processes, specifying realistic boundary conditions, and implementing accurate, robust, and highly parallel unstructured grid numerical algorithms. The model domain incorporates the western North Atlantic, the Gulf of Mexico, and the Caribbean Sea so that interactions between basins and the shelf are explicitly modeled and the boundary condition specification of tidal and hurricane processes can be readily defined at the deep water open boundary. The unstructured grid enables highly refined resolution of the complex overland region for modeling localized scales of flow while minimizing computational cost. Kinematic data assimilative or validated dynamic-modeled wind fields provide the hurricane wind and pressure field forcing. Wind fields are modified to incorporate directional boundary layer changes due to overland increases in surface roughness, reduction in effective land roughness due to inundation, and sheltering due to forested canopies. Validation of the model is achieved through hindcasts of Hurricanes Betsy and Andrew. A model skill assessment indicates that the computed peak storm surge height has a mean absolute error of 0.30 m

    Differential scanning calorimetry (DSC) and thermodynamic prediction of liquid fraction vs temperature for two high-performance alloys for semi-solid processing (Al-Si-Cu-Mg (319s) and Al-Cu-Ag (201))

    Get PDF
    There is a need to extend the application of semi-solid processing (SSP) to higher performance alloys such as 319s (Al-Si-Cu-Mg) and 201 (Al-Cu-Ag). The melting of these two alloys was investigated using differential scanning calorimetry (DSC) and thermodynamic prediction. The alloys had been processed by magneto-hydrodynamic (MHD) stirring before receipt to produce a microstructure suitable for SSP. The DSC results for the as-received MHD material were compared with those for material which has been taken through a complete DSC cycle and then reheated for a second DSC run. The effects of microsegregation were then analyzed. A higher liquid fraction for a particular temperature is found in the second DSC run than the first. Microstructural observations suggest this is because the intermetallics which form during the first cooling cycle tend to co-located. Quaternary and ternary reactions then occur during the second DSC heat and the co-location leads to enhanced peaks. The calculated liquid fraction is lower with 10 K/min DSC heating rate comparing with 3 K/min at a given temperature. The DSC scan rate must therefore be carefully considered if it is to be used to identify temperature parameters or the suitability of alloys for SSP. In addition, the starting material for DSC must represent the starting material for the SSP. With thermodynamic prediction, the equilibrium condition will provide better guidance for the thixoforming of MHD stirred starting material than the Scheil condition. The Scheil mode approximates more closely with a strongly microsegregated state

    Monitoring local well-being in environmental interventions: a consideration of practical trade-offs

    Get PDF
    Within the field of environmental management and conservation, the concept of well-being is starting to gain traction in monitoring the socio-economic and cultural impact of interventions on local people. Here we consider the practical trade-offs policy makers and practitioners must navigate when utilizing the concept of well-being in environmental interventions. We first review current concepts of well-being before considering the need to balance the complexity and practical applicability of the definition used and to consider both positive and negative components of well-being. A key determinant of how well-being is operationalized is the identity of the organization wishing to monitor it. We describe the trade-offs around the external and internal validity of different approaches to measuring well-being and the relative contributions of qualitative and quantitative information to understanding well-being. We explore how these trade-offs may be decided as a result of a power struggle between stakeholders. Well-being is a complex, multi-dimensional, dynamic concept that cannot be easily defined and measured. Local perspectives are often missed during the project design process as a result of the more powerful voices of national governments and international NGOs, so for equity and local relevance it is important to ensure these perspectives are represented at a high level in project design and implementation

    Getting the strain under control: Trans-Varestraint tests for hot cracking susceptibility

    Get PDF
    A new method for conducting Trans-Varestraint tests for assessing hot cracking susceptibility is proposed. Experiments were carried out, to validate the new method, with an industrial scale rig using tungsten inert gas welding. The hot cracking susceptibility of API-5L X65 and EN3B steel was compared. The results indicated that, by using the new method, the strain applied to the welding bead and consequently to the solidification front was controlled in a repeatable and reliable way. The results also indicated that EN3B has a maximum crack length (a parameter in the test) higher than X65 and it is reached at lower augmented strain thus demonstrating it is more susceptible to hot cracking, while also indicating that there is a capability of predicting the initiation position of hot cracks during welding. By using the method proposed, the capability of setting standardized test procedures for Trans-Varestraint tests is improved. It is recommended that future tests for assessing hot cracking susceptibility should employ the proposed method in order for the results to be comparable and to also study the effect of strain rate in hot cracking of materials

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore