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Lakes are major repositories of biodiversity, provide multiple ecosystem services and are widely recognised
as key indicators of environmental change. However, studies of lake response to drivers of change at a
pan-European scale are exceptionally rare. The need for such studies has been given renewed impetus by
concerns over environmental change and because of international policies, such as the EU Water Framework
Directive (WFD), which impose legal obligations to monitor the condition of European lakes towards sustain-
able systems with good ecological status. This has highlighted the need for methods that can be widely ap-
plied across large spatial and temporal scales and produce comparable results. Remote sensing promises
much in terms of information provision, but the spatial transferability and temporal repeatability of methods
and relationships observed at individual or regional case studies remains unproven at the continental scale.
This study demonstrates that NOAA Advanced Very High Resolution Radiometer (AVHRR) thermal data are
capable of producing highly accurate (R2>0.9) lake surface temperature (LST) estimates in lakes with vari-
able hydromorphological characteristics and contrasting thermal regimes. Validation of the approach using
archived AVHRR thermal data for Lake Geneva produced observations that were consistent with field data
for equivalent time periods. This approach provides the basis for generalizing temporal and spatial trends
in European lake surface temperature over several decades and confirms the potential of the full 30 year
NOAA AVHRR archive to can provide AVHRR-derived LST estimates to help inform European policies on
lake water quality.

© 2012 Published by Elsevier Inc.

1. Introduction

Lakes are dynamic ecosystems with characteristics that vary
according to landscape setting and the environmental history of the
water body and its associated catchment (Horne & Goldman, 1994;
Moss, 1998). The trajectory of change depends on the mode of basin
formation, rate of natural processes such as sedimentation and wet-
land succession, as well as anthropogenic factors such as shoreline
development (Maitland, 1990; Welch, 1935). Natural evolution in
lakes occurs over hundreds to tens of thousands of years (Hickling,
1975), while change due to human activities (e.g. pollution from in-
dustry, urban waste and agriculture, lakeshore constructions etc.)
may occur more rapidly and depends on the intensity of pressures
and the specific sensitivities of the system (Foley et al., 2005; ILEC,
2011).

A major driver of change in lakes is climate variability with several
studies suggesting that lakes are sensitive indicators of changes to
climate at local to larger spatial scales (e.g. De Stasio et al., 1996;

Williamson et al., 2010). For example, European lake ecosystems are
influenced by variations in the North Atlantic Oscillation (e.g. Gerten
& Adrian, 2000, 2001; Livingstone & Dokulil, 2001; Straile, 2000;
Straile & Adrian, 2000; Weynhenmeyer et al., 1999, 2002). In addition,
lakes have the potential to reveal changes and homogeneous trends
even at relatively short (i.e. decadal) temporal scales (e.g. Arhonditsis
et al., 2004; Livingstone, 2003). Climatic changes are predicted to
occur non-uniformly across the globe (Hardy, 2003) and have different
effects on lakes depending on geographic location (Adrian et al., 2009).
This is likely to lead to complex response patterns requiring compre-
hensive surveillance monitoring programmes to identify rates of
change and the greatest sensitivity within individual systems in terms
of water resource and ecological response. Factors complicating the
linkages between water quality parameters and climate include catch-
ment land management changes, linked agricultural policies, point
and diffuse pollution, habitat destruction and the impacts of invasive
alien species (EUROPA WFD, 2011; UNEP, 2000). Nevertheless, the
surface water temperatures of lakes respond directly to meteorological
fluctuations in air temperature, cloud cover, water vapour pressure
(relative humidity) and wind speed (Livingstone & Dokulil, 2001).
Even though the responsiveness of different systems owes much to
site-specific characteristics such as lake size, shape and catchment char-
acteristics (Gerten &Adrian, 2001), lakes locatedmany kilometres apart
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and in different hydroclimatic regions have been shown to exhibit sim-
ilar response to synoptic-scale meteorological forcing (Livingstone &
Padisák, 2007). The latter suggests a coherent response to the same
regional-scale climatic phenomena.

In Europe there are approximately 500 000 lakes with a surface
area greater than 0.01 km2 (EEA, 2010). Due to the dynamic and var-
iable character of lake ecosystems and the range of pressures on lake
function, repeated monitoring of these ecosystems is vital to prevent
degradation and promote system recovery where necessary. This has
led to the implementation of various policy-related programmes and
schema at both national and international levels, most notably the EC
Water Framework Directive (WFD) introduced in 2000 (EUROPA
WFD, 2011). According to this surfacewater bodies (including lakes) re-
quire biophysical conditionmonitoring every six years. The internation-
al character of the WFD has introduced the need for methods that can
be widely applied over large spatial and temporal scales and produce
comparable results. The ability to study multiple sites, despite the
large distance separating themand the extremedifferences in their eco-
logical characteristics, could offer an insight into the inter-regional
drivers of thermal change in European lakes.

Monitoring lakes across multiple spatial and temporal scales can
often be challenging, as it depends on an understanding of the underly-
ing drivers of change, the direct and/or indirect response of individual
lakes to the latter and the reliability of methods used for lake monitor-
ing. Because of that, recent advances in lake watermapping techniques,
such as the incorporation of estimates of water quality from remote
sensing instruments, have revolutionised the monitoring of lacustrine
systems (Kondratyev & Filatov, 1999). Remote sensing has been
employed at local and regional scales for lake studies due to its ability
to estimate lake properties covering large spatial scales (e.g. George,
1997; Gitelson et al., 1993; Pulliainen et al., 2001). However, transfer-
ring methods and relationships observed over continental scales and
multiple sites has proved problematic and no European study has to
date overcome the challenges of reconciling transferable regionalised
algorithms capable of accommodating different ecoregions, lake mor-
phometries and thermal regimes. In addition, issues like the skin effect,
when remotely sensed temperature estimates from the uppermost
layer of the water surface (i.e. skin temperatures) are compared to
bulk temperatures measured in situ at depths ranging from a few
centimetres to a fewmetres (e.g. buoys and shipmeasurements), intro-
duce uncertainty in the accuracy assessment of LST estimation algo-
rithms (Donlon et al., 2002; Minnett, 2003). In fact, the difference
between skin and bulk temperature can be between 0.1 and 0.5 °C
and it is a highly recognised limitation in LST estimations with remote
sensing (Crosman & Horel, 2009). As a result, reliable, transparent and
transferable methodologies are needed.

The use of NOAA AVHRR thermal data over large lakes has been
demonstrated in the past for individual sites or sites within the
same geographic region and for limited time periods (e.g. Oesch et
al., 2005; Wooster et al., 1994, 2001). For example, Bussières and
Schertzer (2003) used AVHRR LST estimates to produce seasonal
time series for a 6 month period and study temperature trends within
a group of boreal lakes. In this paper, the aim is to demonstrate the
reliability of the NOAA AVHRR in concurrently estimating LST across
multiple lakes within different settings across Europe using a universal
algorithm. The remote sensing-based approach produces LST time-
series across multiple hitherto unmonitored sites; thus allowing for
synoptic scale characterisation of trends unachievablewith convention-
al ground-based monitoring.

2. Data and methodology

2.1. Approach

The first stage was to evaluate the performance of remote sensing-
derived temperate estimates (using NOAA AVHHR) against conventional

field measurements. Data were sourced from 23 lakes across Europe
wherein government and research agencies had established long-term
and systematic field data collection programmes. The sites spanned a
range of latitudes and longitudes and are situated across the European
mainland and Great Britain. Four lakes from this larger dataset are
reported in the current investigation as exemplars of the approach.
They also represent four major WFD ecoregions (Alps, Hungarian
lowlands, Central plains and Fenno-Scandian shield) and encompass
a range of mixing regimes (cf. Hutchinson & Loffler, 1956; Kolada et
al., 2005).

Many lake classification schemes (typologies) are available, usually
based upon specific chemical, biological and/or thermal properties. For
consistencywith CENGuidance Standards, this study employed the ‘Sys-
tem A’ lake typology of theWFD (CEN, 2010; EC Guidance Document No
10, 2003). This scheme employs the idea of ecoregions and categorises
lakes according to four natural abiotic lake characteristics (Table 1),
including altitude, mean depth, surface area and geology (EC Guidance
Document No 10, 2003; Kolada et al., 2005). We also used the
mixing-regime based scheme of Hutchinson and Loffler (1956) (as
cited in Kondratyev & Filatov, 1999) that distinguishes lakes into amictic,
cold monomictic, dimictic, warm monomictic and oligomictic, taking
into consideration their thermal properties, altitude, geographical loca-
tion (with respect to latitude) and the depth of the basin.

2.2. Study sites

Lake Geneva or Léman (Alps) is a deep and very large glacial trough
located in an Alpine setting between Switzerland and France. The climat-
ic regime is temperate maritime and due to its great depth (Table 2) full
mixing does not happen in all years (Livingstone, 1993). Thermal strati-
fication is usually established between April and October, while in the
rest of the year the lake (partially) mixes responding to meteorological
forcing (Livingstone, 1993). The River Rhône is the main inflow into
the eastern part of the lake and discharges at the southwestern end
(ILEC, 2011). There are no islands.

Lake Balaton (Hungarian lowlands) is the largest lake in Hungary
and is a tectonic basin (Padisák, 1992). Due to its size, shallow
depth and absence of islands it is strongly influenced by wind action
that causes frequent mixing (ILEC, 2011). As a result, Lake Balaton is
polymictic and generally isothermal, so the temperature measured
at the surface is considered representative of the column as a whole
(Livingstone & Padisák, 2007). It has a freezing period of two months
in winter. The main inflow is the River Zala located in the south-west
(ILEC, 2011).

Lake Vättern (Central plains) is a deep, very large lake situated in a
low lying shield setting in southern Sweden. The deepest water is lo-
cated in the southern sub-basin, while the lake is shallower in the
central and northern parts. There are numerous small islands within

Table 1
WFD lakes typology; obligatory parameters used in System A (CEN, 2010;
EC Guidance Document No. 10, 2003).

Parameter Description

Altitude Lowland: b200 m a.s.l
Mid-altitude: 200–800 m a.s.l
High: >800 m a.s.l

Mean depth Very shallow: b3 m
Shallow: 3–15 m
Deep: >15 m

Surface area Small: 0.5–1 km2

Medium: 1–10 km2

Large: 10–100 km2

Very large: >100 km2

Geology Organic
Siliceous
Calcareous

2 E. Politi et al. / Remote Sensing of Environment 126 (2012) 1–11
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the lake, mostly situated close to the lakeshore. Lake Vättern is
dimictic and freezes partially in winter (ILEC, 2011).

Lake Oulujärvi (Fenno-Scandian shield) in Finland contains three
distinct sub-basins. It is a shallow and very large dimictic lake. There
are numerous islands within Lake Oulujärvi and a few enclosed bays
(ILEC, 2011).

2.3. Field measurements

Any remotely sensed estimates of LST require independent valida-
tion using field data and so a number of organisations were contacted
and archived field LST measurements were requested. Previous re-
mote sensing-based studies have relied on measurements made dur-
ing the night to avoid discrepancies between field measurements and
satellite estimations due to the skin effect induced by solar insolation.
For example, Oesch et al. (2005) found that data collected at night
generally showed more reliable results, as the day-time algorithms
overestimated surface temperature especially inwarm summermonths
due to solarwarming of the surface. However, themajority of fieldmea-
surements are generally acquired during the day and from different
depths (Table 3). As this work relied upon field measurements previ-
ously acquired, day-time satellite data that matched the timings of the
field LST measurements were used.

Table 3 summarises the sampling period, frequency, sampling
depth and the field data supplier in the four study sites. The location
of the study sites and the sampling stations within each site are
shown in Fig. 1.

2.4. Study periods

The study periods were determined after the field data acquisition
was completed and remote sensing data were acquired to coincide
with periods of field data richness. A large number of frequent field
sampling dates increased the possibility of coinciding cloud-free sat-
ellite overpasses, despite the frequent cloud cover in Europe. To de-
termine which periods would be suitable, a field data quantity and
quality assessment took place. The periods for which field and remote
sensing data coincided most frequently were the four-year periods of
1993–96 and 2001–04. Both these observation periods featured sig-
nificant air-temperature related weather phenomena across Europe

linked to the winter North Atlantic Oscillation (NAO) index inter-
annual variability (CRU, 2011; Hurrell, 1995; Livingstone, 1997). The
decade 1998–2007 has been the warmest since 1850, and especially
the years 2002, 2003 and 2004 were among the top five warmest
years since 1890 (WMO, 2011).

2.5. Satellite data acquisition

The data acquired included all fivewavebands of the AVHRR/2 (NOAA
9, 11, 12 and 14) and six wavebands of the AVHRR/3 (NOAA 16 and 17)
instrument onboard the NOAA polar satellites. The reflected radiance in
AVHRR/2 and AVHRR/3 bands 1 (0.58–0.68 μm) and 2 (0.725–1.1 μm)
and AVHRR/3 band 3a (1.58–1.64 μm), and the emitted radiance in
AVHRR/2 band 3 (3.55–3.93 μm) and AVHRR/3 3b (3.55–3.93 μm) were
acquired to facilitate the development of a cloudmaskmodel. The bright-
ness temperatures of bands 4 (10.3–11.3 μm) and 5 (11.5–12.5 μm)were
used for the LST estimation. The spatial resolution of the instrument at the
satellite nadir is approximately 1.1 km.

The data consisted of the full swath of NOAA-9, -11, -12, -14, -16,
-17 AVHRR scenes and hence each included more than one study site.
A total of 87 NOAA AVHRR cloud-free (or almost cloud-free) images
were used for the validation of the MCSST and NLSST algorithms
and 16 NOAA AVHRR cloud-free images were used for the algorithm
calibration for lake waters. Table 4 shows the number of cloud-free
NOAA AVHRR images available for each site and the number of pairs
of field data and satellite estimations that were consequently avail-
able for the algorithm validation process.

Satellite images were typically acquired within the same 12 hour
daytime period from the time of field measurements, whenever that
was known. The exception being in Lake Vättern for which only five
cloud-free images were available on dates that coincided with field
measurements. In order to increase the sample size for that site,
seven more scenes acquired ±2 days of the field sampling date were
also included. For the latter the assumptionwas made that the variabil-
ity in temperature was not significant within a period of 1–2 days.

2.6. Data pre-processing

The NOAA AVHRR visible and near-infrared data were atmospher-
ically corrected for Rayleigh scattering and the NOAA AVHRR thermal
data were atmospherically corrected for water vapour absorption by
the Natural Environment Research Council (NERC) Earth Observation
Data Acquisition and Analysis Service (NEODAAS) Plymouth Marine
Laboratory (PML) Remote Sensing Group (RSG). Geometric correc-
tions were not applied. Instead, a geolocation file was appended to
each dataset to facilitate the comparison of satellite data pixel values
to field data from sampling stations of known coordinates.

The cloud pixel information provided by the NEODAAS PML RSG
was developed for marine applications and thus its accuracy over in-
land waters was uncertain (NEODAAS PML RSG, Personal communi-
cation, 2007). To check the validity of the cloud mask, a visual
analysis of the AVHRR/2 and AVHRR/3 bands was undertaken to ex-
clude non-water and mixed pixels within the images. In addition,
the adjacency effect, a phenomenon that occurs within pixels close
to land-water boundaries (or any bright/dark boundary), where ef-
fectively the signal from pure water pixels is affected by scattered ra-
diation from neighbouring land (Odermatt et al., 2008), was also
addressed. The adjacency effect occurs in the visible and nIR spetral
regions and is greatly influenced by the amount and vertical distribu-
tion of aerosol particles in the atmosphere (Minomura et al., 2001). It
causes an overestimation of atmospheric radiance over the affected
pixels and a subsequent underestimation of water leaving radiance
(Ruiz-Verdú et al., 2008). In lakes, the adjacency effect is uncertain
and so whilst the removal of near-shore pixels from further analysis
should address the problem (cf. Lavender et al., 2004), and thus applied
here, its real impact requires further investigation.

Table 2
Morphological properties of the lakes covered in this study.

Lake Altitude
(m a.s.l.)

Max
depth
(m)

Mean
depth
(m)

Volume
(km3)

Surface
area
(km2)

Shoreline
length
(km)

Catchment
size
(km2)

Geneva 372 310 153 88.9 584 167 7975
Balaton 105 12 3.2 1.9 593 236 5775
Vättern 89 128 40 74 1856 642 4503
Oulujärvi 122 38 7 6.2 887 (n/a) (n/a)

Table 3
Data suppliers and sampling period, frequency and depth of lake surface temperature
in the four study sites.

Lake Data supplier Temperature Sampling
depth (m)

Vättern Swedish Environmental
Protection Agency

1969–2003
monthly; Apr–Oct

0.5

Geneva International Commission
for the Protection of
Lake Geneva (CIPEL)

1984–2004
biweekly–monthly;
all months

0

Balaton Hungarian Ministry of
Environmental Protection
and Water Management;
Ministry of Health

2000–2006
weekly; mid
May–mid Sep

0.3–0.5

Oulujärvi Finnish Environment
Institute (SYKE)

1960–2005 biweekly,
monthly, seasonally

1
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2.7. The NOAA AVHRR LST estimation algorithms

For NOAA AVHRR, the split window approach combines an effective
atmospheric correction of the thermal radiance emitted by a water body
with the advantage of taking into consideration the variation of atmo-
spheric path length with changing satellite zenith angle (Oesch et al.,
2005). In this project both the linear multichannel SST estimation
(MCSST) and non-linear SST estimation (NLSST) split window algorithms

were used to estimate LST. The applicability of both algorithms in lake
water bodies was suggested for the first time by Oesch et al. (2005).
These authors tested the accuracy of both AVHRR operational algorithms
in three European alpine lakes; namely Lakes Constance, Geneva and
Mond (in Austria) in 2002 and 2003 and found that theMCSST algorithm
provided more accurate estimations of LST than the NLSST. Here, the
accuracy of these algorithms was assessed in three lakes with different
typology and at different ecoregions.

Fig. 1. Geographic map of Europe (a) showing the location of the four lakes and maps of Lakes Geneva (b), Balaton (c), Vättern (d) and Oulujärvi (e) showing the location of the in situ
measurements.

4 E. Politi et al. / Remote Sensing of Environment 126 (2012) 1–11
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The general form of the MCSST and NLSST equations is given
below:

MCSST ∘C½ � ¼ A1 T4ð Þ þ A2 T4−T5ð Þ þ A3 T4−T5ð Þ sec θð Þ−1ð Þ−A4 ð1Þ

NLSST ∘C½ � ¼ B1 T4ð Þ þ B2 T4−T5ð ÞTsfcþ B3 T4−T5ð Þ sec θð Þ−1ð Þ−B4 ð2Þ

where T4 and T5 are the brightness temperatures of AVHRR bands 4
and 5 in degrees Kelvin; Sec(θ) is the secant of the satellite zenith
angle θ; MCSST and NLSST are results of the linear multi-channel
and the non-linear SST algorithms, respectively, in degrees Celsius;
A1,2,3,4 and B1,2,3,4 are constant coefficients; and Tsfc is an a priori es-
timate of the water surface temperature in degrees Celsius. The con-
stant coefficients in Eqs. (1) and (2) are estimated either from
model simulations or correlations with field measurements and for
each satellite are given in Tables 5–6. Since the input brightness tem-
peratures (T4 and T5) were acquired from NEODAAS in degrees Celsi-
us (°C), the last constants in Eqs. (1) and (2) (A4 and B4),which are used
as converters from degrees Kelvin to Celsius, were omitted. The Tsfc
value can be a LST estimation derived from AVHRR data using one of
the MCSST equations (Oesch et al., 2005). In this study, the MCSST
values were used in the non-linear NLSST algorithm rather than a priori
LST estimates obtained from analysis of past satellite LST data.

Uncertainty in LST estimations may be introduced due to distor-
tions in the image pixels viewed at large viewing angles, because of
greater attenuation caused by an increase in the atmospheric path
length. At nadir, the IFOV is equal to approximately 1.1 km and
increases with distance from the satellite nadir to 5 km (along
track) and 6.8 km (across track) at the scanning extreme of 55.4°
(Latifovic & Pouliot, 2007). Due to this distortion, adjacent off-nadir
pixels overlap and cause off-nadir observations to be highly redundant
(Cracknell, 1997). Oesch et al. (2005) suggested that pixels viewedwith
a satellite zenith angle greater than 53° should be excluded fromany re-
trieval of LST. In this study, pixels viewed with a satellite zenith angle
greater than 50° were excluded from analysis as the retrieval of LST
can be compromised by such geometry effects (Oesch et al., 2005).

2.8. Validation of the NOAA AVHRR algorithms

The two algorithms were applied to the NOAA AVHRR data and
the performance of the algorithms was then tested. For that purpose,
lists of coinciding field data and remotely sensed LST estimates were
produced for each lake and year as described above. The remotely
sensed data were averaged values of the parameters calculated from
a 9-pixel squared grid centred around the pixel where the sampling
station was located to avoid issues of geometric distortion and conse-
quent imprecise determination of the location of sampling points in
the images. The assumption was made that a point measurement
from the sampling station was representative of the average value
of the parameter studied for a 9 km2 area containing the sample
(Lavender et al., 2004), but clearly this would depend upon the intrin-
sic scale of variation of the parameter under consideration. Baban
(1993) found that the use of a 3×3 pixel average, when comparing
Landsat TM data to field measurements, was the optimum size of ker-
nel, as opposed to smaller or larger sized kernels, because it reduced
noise in the data or the selection of biased pixel values.

The relationship between estimated and observed LST values was
assessed using Pearson's and/or Spearman's Rank correlation. Where
the data were not normally distributed or the sample size (n) was
small (nb6) only the non-parametric Spearman's rho correlation co-
efficient (ρ) was applied (Wheeler et al., 2006). Both correlation coef-
ficients were computed for all datasets with sample sizes between 6
and 30 for comparison. For datasets with n greater than 30 the choice
of test depended upon normality.

Goodness of fit was established using the coefficient of determina-
tion (R2), the root mean square error (RMSE) and the systematic error
(bias) of prediction. The RMSE is a measure of accuracy (Atkinson &
Foody, 2002) and it was calculated as shown below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

x pred½ �i−x true½ �i
� �2

vuut ð3Þ

where RMSE=root mean square error of prediction; n=number of
observations (sample size); x[pred]i=predicted value of observation i;
and x[true]i=true value of observation i.

Bias is an expectation of over- or under-estimation and ameasure of
the systematic errors associatedwith the estimation (Atkinson & Foody,
2002). Biaswas calculated according to the following equation,which is
essentially the mean error of the estimation:

bias ¼ 1
n

Xn
i¼1

x pred½ �i−x true½ �i
� � ð4Þ

The significance of all statistical tests was calculated at the 99%
(0.01) level of significance (2-tailed), unless otherwise stated.

Table 4
Number of available cloud-free images, sampling stations and pairs of coinciding field
and remote sensing data in the study periods at the four sites.

Lake Period Number
images

Number of
stations

Number of
pairs

Geneva 1993–96 and 2001–04 58 1 58
Balaton 2001–04a 34 4 110
Vättern 1993–96 and 2001–04 12 2 17
Oulujärvi 2001–04a 16 7 22

a There were no field data available for Lake Balaton and Lake Oulujärvi in 1993-96.

Table 5
Operational day-time linear multi-channel sea surface temperature (MCSST) estima-
tion algorithm using a split window approach for AVHRR data (NOAA MOST, 2009).

Period of validation NOAA SST equation

30/03/1988–31/12/9999 9 T4+2.6084 (T4–T5)−0.0269T5−265.479
11/06/1993–31/12/9999 11 0.979224T4+2.361743 (T4–T5)+0.33084

(T4–T5)(sec(θ)−1)−267.029
08/04/1994–31/12/9999 12 0.963563T4+2.579211 (T4–T5)+0.242598

(T4–T5)(sec(θ)−1)−263.006
20/03/1995–31/12/9999 14 1.017342T4+2.139588 (T4–T5)+0.779706

(T4–T5)(sec(θ)−1)−278.43
21/09/2000–31/12/9999 16 0.999314T4+2.30195 (T4–T5)+0.628976

(T4–T5)(sec(θ)−1)−273.768
27/07/2002–31/12/9999 17 0.992818T4+2.49916 (T4–T5)+0.915103

(T4–T5)(sec(θ)−1)−271.206

Table 6
Operational day-time non-linear sea surface temperature (NLSST) estimation algo-
rithm using a split window approach for AVHRR data (NOAA MOST, 2009). Note that
a NLSST equation has not been developed for NOAA-9 AVHRR data.

Period of validation NOAA SST equation

06/11/1993–31/12/9999 11 0.92323 T4+0.082523 (T4-T5) Tsfc
+0.463038 (T4-T5)(sec(θ)-1) - 250.109

08/04/1994–31/12/9999 12 0.876992T4+0.083132 (T4–T5) Tsfc
+0.349877 (T4–T5)(sec(θ)−1)−236.667

20/03/1995–31/12/9999 14 0.939813T4+0.076066 (T4–T5) Tsfc
+0.801458 (T4–T5)(sec(θ)−1)−255.165

21/09/2000–31/12/9999 16 0.914471T4+0.0776118 (T4–T5) Tsfc
+0.668532 (T4–T5)(sec(θ)−1)−248.116

27/07/2002–31/12/9999 17 0.936047T4+0.083867 (T4–T5) Tsfc
+0.920848 (T4–T5)(sec(θ)−1)−253.951
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3. Results

3.1. Performance of the NOAA AVHRR algorithms

The field LST data from lakes Balaton, Geneva and Vättern were
strongly correlatedwith both NOAA AVHRRMCSST and NLSST estimates

on corresponding dates (Table 7, Fig. 2). Field LST data from Lake Geneva
showed the strongest correlationwith satellite estimates, followed close-
ly by data from Lake Vättern and Lake Balaton. These results show that
both MCSST and NLSST algorithms have a strong potential to estimate
LST in lakes with different characteristics. In fact, field data from all
three lakes (combined into a common dataset) were strongly correlated
with corresponding NOAA AVHRR MCSST and NLSST estimates for all
available years (Table 7, Fig. 3).

The bias and RMSE values for the three individual lakes and for the
combined dataset (Table 8) showed promising results. For the com-
bined dataset, the MCSST algorithm had a slightly larger bias
(1.22 °C) than the NLSST algorithm (−0.89 °C). The accuracy (mea-
sured with the RMSE) of the MCSST algorithmwas 2.29 °C and the ac-
curacy of the NLSST algorithm was 2.22 °C.

The above results illustrate that both NOAA AVHRR MCSST and
NLSST algorithms performed well in three individual lakes and
when all three lakes were combined into a common dataset. As a
result, they both showed strong potential for the estimation of LST
in large European lakes with various ecological characteristics and

Table 7
Correlation of field LST data with the NOAA AVHRR MCSST and NLSST estimates in
lakes Balaton, Geneva and Vättern in 1993–96 and 2001–04. All results shown below
are significant at the 0.01 level (2-tailed). No result indicates data were not normally
distributed or that n>30 so only parametric tests were performed.

Lake Sample size (n) Pearson's
coefficient (r)

Spearman's
rho (ρ)

MCSST NLSST MCSST NLSST

Balaton 110 0.731 0.725 – –

Geneva 58 0.952 0.952 – –

Vättern 17 0.948 0.921 0.931 0.912
Combined data 185 – – 0.891 0.890
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Fig. 2. Scatter-plot between the field LST data and the NOAA AVHRR MCSST and NLSST estimates in Lakes Balaton (a, b), Geneva (c, d) and Vättern (e, f) using data from 1993–96
and 2001–04. The lines were determined by linear regression. The 95% confidence intervals on the mean (outer lines) and the coefficient of determination (R2) for each plot are also
shown.
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across different geographical areas. These results agree with the find-
ings by Oesch et al. (2005, 2008).

In all cases, the NOAA AVHRR MCSST estimates showed similar or
slightly stronger correlation with the field LST data than the NLSST esti-
mates. In order to test the significance of differences between the two
algorithms, related-samples T-tests were performed for each lake
(Table 9). These tests showed that the MCSST estimates in all three
lakes were significantly different from the corresponding NLSST esti-
mates, with the MCSST algorithm producing higher values (by 2.11 °C
in average) than the NLSST algorithm. Oesch et al. (2005) suggest that
the difference between the two algorithms might be related to the fact
that theywere developed for different regions, with the NLSST algorithm
beingmore suitable for regions of highwater vapour. In other studies the
NLSST was found to improve the bias compared to the MCSST, but
increase the standard deviation of satellite-field data difference (e.g. Li
et al., 2001). Following the aforementioned, the MCSST algorithm was
chosen instead of the NLSST for further analysis.

3.2. Calibration of the NOAA AVHRR MCSST algorithm

The MCSST algorithm was then calibrated for lake waters using data
from Lake Oulujärvi thatwere not employed during the assessment of its
performance. Twenty-two NOAA AVHRR images from Lake Oulujärvi
were used that coincided with field data measurements. The algorithm
used for the calibration was the linear regression equation between
field data and AVHRR MCSST estimates from lakes Balaton, Geneva
and Vättern (Fig. 3(a)) in order to create a universal algorithm (i.e. not
location-dependent):

MCSSTcal½∘C� ¼ 0:951ðMCSSTÞ−0:183 ð5Þ
The calibrated algorithm (Fig. 4) had a bias=0.2 °C and a RMSE=

1.64 °C, which are less than those of the original MCSST.

3.3. Temperature trends in LST over the two study periods

Due to irregularities in sampling frequency (i.e. in this study rang-
ing from daily to seasonal) interpolation is a common procedure in
limnological studies when numerous past data are used for trend
analysis (Livingstone, 2003). In this study, interpolation was used
for illustration purposes only as the dataset for Lake Geneva was in-
complete due to cloud cover and technical problems that delayed
the acquisition of data. Interpolated remote sensing estimates from
all available years in Lake Geneva were calculated at daily intervals
using linear interpolation and plotted to provide seasonal and annual
time series (Fig. 5). Fig. 5 shows that there seems to be no significant
trend in LST in the two study periods, which is in accordance with
what the field data have showed for the same time periods. However,
more frequent data are required in order to investigate the latter
further.

Figs. 6–7 demonstrate the usefulness of remote sensing that can pro-
vide information to fill in gaps in field sampling campaigns, when these

(a)

Field data (degrees C)
3020100

M
C

S
S

T
 (

d
eg

re
es

 C
) 30

20

10

0

R Sq Linear = 0.914

(b)

Field data (degrees C)
3020100

N
L

S
S

T
 (

d
eg

re
es

 C
) 30

20

10

0

R Sq Linear = 0.905

Fig. 3. Scatter-plot between the field LST data and the NOAA AVHRR MCSST (a) and NLSST
(b) estimates in all three lakes combined: Balaton (white circles), Geneva (crosses) and
Vättern (black squares). The lines were determined by linear regression. The 95% confidence
intervals on themean (outer lines) and the coefficient of determination (R2) for each plot are
also shown.

Table 8
Calculated bias and RMSE values of the MCSST and NLSST algorithms when data from
lakes Balaton, Geneva and Vättern were used separately and combined into a common
dataset.

Lake Sample size (n) Bias RMSE

MCSST NLSST MCSST NLSST

Balaton 110 0.96 −1.18 2.02 2.20
Geneva 58 1.86 −0.27 2.72 2.01
Vättern 17 0.71 −1.19 2.36 2.95
Combined data 185 1.22 −0.89 2.29 2.22

Table 9
Results of related-samples T-test between the NOAA AVHRR MCSST and NLSST esti-
mates in lakes Balaton, Geneva and Vättern in 1993–96 and 2001–04.

Lake Descriptive statistics df t-statistic p-value

Mean (M) Standard
Deviation (SD)

MCSST NLSST MCSST NLSST

Balaton 24.66 22.53 2.51 2.64 109 52.914 0.000
Geneva 17.19 15.06 6.54 6.54 57 37.893 0.000
Vättern 10.98 9.08 7.17 6.78 16 10.692 0.000
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Fig. 4. Surface temperature (black dots) estimated in Lake Oulujärvi using the MCSSTcal
algorithm with the 95% confidence intervals of the mean also plotted (whiskers). The
LST field measurements (crosses) are also presented for comparison.
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are limited to one measurement every few months in a year (Fig. 6(a))
or just a specific season (Fig. 6(b)) or time period (Fig. 7).

3.4. Processing chain

Fig. 8 summarises the processing chain proposed in this study for
the estimation of LST from NOAA AVHRR data in large European lakes.

4. Discussion and conclusions

The results of this study demonstrate that bothNOAAAVHRRMCSST
and NLSST algorithms were highly correlated with field LST measure-
ments from lakes with various characteristics (ρ=0.89, pb0.01 for
both algorithms). It was also found that the NOAA AVHRR thermal
data were capable of estimating surface temperature in European
lakes when the MCSST (RMSE=2.29 °C) and NLSST (RMSE=2.22 °C)

operational algorithms were used and that the accuracy of these algo-
rithms could be further improved if they are calibrated with field data
(e.g. bias=0.2 °C and RMSE=1.64 °C for MCSSTcal).

The proposed methodology has shown promising results towards
the ultimate goal of being able to use remote sensing approaches to
replace resource-intensive field-based lake monitoring programmes.
The wider applicability of remote sensing is constrained by cloud
cover issues and data processing demands that restricted the total
number of images examined within the study periods. Wheeler et
al. (2006) suggest 30-60 samples will provide the basis for a statisti-
cally sound interpretation. We have used a total of 185 samples to as-
sess the accuracy of the algorithms and 22 samples for the algorithm
calibration. These were collected over two different 4-year periods in
all seasons, whenever that was possible. Even though the sample size
was large enough to demonstrate the applicability of MCSST and
NLSST in lake waters, a larger number of samples used for the calibra-
tion of the algorithm could potentially increase its accuracy. In addi-
tion, further analysis is needed to investigate why lower correlation
was observed between field data and satellite estimates in Lake
Balaton, in respect to the other two sites (Table 7), and explain the
occurrence of outliers in Lakes Geneva and Vättern (Fig. 2).

Another limitation is the different sampling depths of the field data
used in this study. The skin effect may have significantly influenced the
accuracy of the calibrated algorithm and should be taken into consider-
ation in future lake studies, as data from Lake Oulujärvi were collected
at 1 m below the surface and were compared to skin temperatures
detected by the sensor.

Despite the frequent revisit time of the NOAA AVHRR satellites and
the reliability of night-time data for LST retrieval (Oesch et al., 2005),
cloud cover might make it difficult to retrieve winter and annual
mean temperatures in the frequency required for climate studies. A so-
lution to this could bewinter field campaigns and/or techniques such as
interpolation (Livingstone, 2003). According to the proposedmethodol-
ogy, only lake bodies that are large enough can be mapped with NOAA
AVHRR data in order to avoid the adjacency effect and geometric distor-
tions that create mixed pixels. In Europe, only twenty four natural lakes
have a surface area larger than 400 km2, but up to 16 000 lakes are larg-
er than 1 km2 (EEA, 2010), which means there is a great potential for
NOAA AVHRR data in lake studies.

In fact, there are several advantages when the NOAA AVHRR is
used to derive estimates of water surface temperatures instead of
other remote sensing instruments (e.g. GOES series, Nimbus-7 CZCS,
Landsat TM/ETM+, ERS ATSR/ENVISAT AATSR, microwave scanners).
Even though the NOAA AVHRR has a less frequent revisit capability
than geostationary satellites, it has finer spatial resolution and much
better calibration than these sensors (Cracknell, 1997). Also, the
NOAA AVHRR thermal bands 4 and 5 have a high signal-to-noise
ratio and a much longer archive than other systems (Cracknell,
1997). In fact, the NOAA AVHRR archive of data dates back to 1979,
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Fig. 5. Temporal patterns of LST in LakeGeneva in 1993–96 and2001–04 using interpolated
NOAA AVHRR MCSSTcal estimates. The trend line (bold) was determined by linear
regression. Notice the break in time between the years 1996 and 2001.
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Fig. 6. Lake surface temperature in Lake Vättern (Station Jungfrun) in 2003 (a) and Lake
Balaton (Station Siofok) in 2002 (b); field LST measurements (circles) and NOAA
AVHRR MCSSTcal estimates (crosses).
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Fig. 7. Lake surface temperature in Lake Balaton (1993–2004): Field LST measurements
(circles–solid line) and NOAA AVHRRMCSSTcal estimates (crosses–dotted line). Notice
the break in time between the years 1996 and 2001.
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providing morning day-time data over European lakes (and around
the Globe) up to four times per day. When different sensors are com-
bined (e.g. NOAA AVHRR and Terra/Aqua MODIS) for the estimation
of the same parameter (e.g. LST), the temporal coverage increases
up to, nominally, ten images per 24 h (Oesch et al., 2008). Assuming
cloud conditions over the lakes are at minimum, this allows for a

much shorter sampling interval than most field sampling campaigns.
In fact, Terra/AquaMODIS data have beenused over lakewaterswith very
promising results (e.g. Crosman & Horel, 2009; Oesch et al., 2008).
Landsat TM/ETM+provide thermal data with a fine spatial resolution
(60–120 m) thatmakes themuseful for the study of small-scale phenom-
ena in inland waters and also have the advantage of a long archive (since
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Fig. 8. Processing chain for the estimation of LST from NOAA AVHRR data in large (≥10 km2) lakes developed in this study.
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1978 for thermal data), but their revisit capability is very infrequent
(especially when cloud cover is considered) which gives them a disad-
vantage over the NOAA AVHRR.

The European Remote Sensing satellite (ERS-1, -2) Along-Track Scan-
ning Radiometer (ATSR-1, -2) and Environmental Satellite (Envisat) Ad-
vanced ATSR (AATSR) are scanners that were designed to produce SST
estimates of higher accuracy than the AVHRR, because they scan data
from both nadir and 52° forwards of nadir, allowing corrections related
to atmospheric scattering and absorption (Rees, 1990). The series have
been operating since 1991, providing a long archive of data and at the
similar spatial resolution (1 km) as the NOAA AVHRR (1.1 km). Howev-
er, the ATSR and AATSR data are not as easily, rapidly and/or as cheaply
available as NOAA AVHRR data (Cracknell, 1997). In addition, the NOAA
AVHRR data can produce SSTmaps of near-real time, whichmakes them
operationally important in oceanographic studies (Robinson, 1985) and
in large lacustrine systems according to this study. Finally, estimates of
water surface temperature can be derived from passive microwave sen-
sors, but with a much coarser spatial resolution than that of the AVHRR,
which makes them valuable only in continental- and global-scale envi-
ronmental monitoring (Lillesand et al., 2008).

Climate variability is attributed partly to natural fluctuations and
partly to human influence, the effect of which is not always easily
separable (Hardy, 2003). However, both natural climatic variability
and human-induced climate change have direct and indirect impacts
on all surface waters, which need to be quantified and accounted for
(Hickling, 1975). According to Page (2006) the actual effect and attri-
bution of both natural and human-induced changes can be estimated
only through careful comparative analysis of howmultiple system in-
dicators behave over space and time. A range of parameters are
influenced by climate change and variability, but LST is considered
the parameter most directly affected by climate, exhibiting strong re-
sponse to climate forcing (e.g. Adrian et al., 2009; Kondratyev & Filatov,
1999; Livingstone & Dokulil, 2001; Livingstone & Padisák, 2007;
Livingstone et al., 2005). Important features such as stratification and
mixing patterns may vary due to climatic fluctuations (e.g. Elo et al.,
1998; Livingstone, 1997; Livingstone & Lotter, 1998), according to the
degree of increase of surface water warming. Warming can also change
the species composition, distribution and growth, and oxygen solubility
decreases at increased temperatures affecting the aquatic biota (Hardy,
2003; Munasinghe & Swart, 2005). As a result, continuous monitoring
of lakes and their response to climate change can offer a valuable insight
into the ecological behaviour of these vulnerable ecosystems.

However, the thermal structure of lakes is specific to eachwater body
and thus, it is difficult to differentiate between the effects of regional cli-
matic phenomena and local meteorology on the thermal characteristics
of lakes unless the changes are well pronounced (Livingstone, 1997).
Nevertheless, the direct response of lake water temperatures at all
depths to air temperature fluctuations at regional and synoptic scales
has been established (e.g. Livingstone & Dokulil, 2001; Livingstone &
Lotter, 1998; Livingstone & Padisák, 2007). Even though the response
of lake temperature to air temperature changes might vary seasonally
and evenmonthly (McCombie, 1959), lakewater temperature is an indi-
cator of long-term climaticfluctuations,with a less pronounced response
to short-termmeteorological forcing (Livingstone, 1993). This study has
showed that remote sensing is a powerful tool for the estimation of lake
surface temperate at pan-continental scales and for a series of consecu-
tive years in lakes with varying characteristics. The estimation of LST
can be performedwith remote sensing data across large spatial and tem-
poral scales and produce comparable results.
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