322 research outputs found

    Gailyn Van Rheenen Papers, 1972-2016

    Get PDF

    Type VI secretion: a beginner's guide

    Get PDF
    Type VI secretion is a newly described mechanism for protein transport across the cell envelope of Gram-negative bacteria. Components that have been partially characterised include an IcmF homologue, the ATPase ClpV, a regulatory FHA domain protein and the secreted VgrG and Hcp proteins. Type VI secretion is clearly a key virulence factor for some important pathogenic bacteria and has been implicated in the translocation of a potential effector protein into eukaryotic cells by at least one organism (Vibrio cholerae). However, type VI secretion systems (T6SSs) are widespread in nature and not confined to known pathogens. In accordance with the general rule that the expression of protein secretion systems is tightly regulated, expression of type VI secretion is controlled at both transcriptional and post-transcriptional levels

    Metal-free syn-dioxygenation of alkenes

    Get PDF
    Reactions employing inexpensive reagents from sustainable sources and with low toxicity are becoming increasingly desirable from an academic and industrial perspective. A fascinating example of a synthetic transformation that requires development of alternative procedures is the osmium catalysed dihydroxylation. Recently there has been considerable interest in achieving this reaction through metal-free procedures. This review describes the methods available for metal-free syn-dioxygenation of alkenes

    Palladium-catalyzed heteroallylation of unactivated alkenes – synthesis of citalopram

    Get PDF
    A palladium-catalyzed difunctionalization of unactivated alkenes with tethered nucleophiles is reported. The versatile reaction occurs with simple allylic halides and can be carried out under air. The methodology provides rapid access to a wide array of desirable heterocyclic targets, as illustrated by a concise synthesis of the widely prescribed antidepressant citalopram

    Sec34p, a Protein Required for Vesicle Tethering to the Yeast Golgi Apparatus, Is in a Complex with Sec35p

    Get PDF
    A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393–406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)–associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an ∼750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well
    • …
    corecore