308 research outputs found

    Naïve beliefs about the natural world in a case of childhood onset amnesia

    Full text link

    Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression

    Get PDF
    BACKGROUND: Experiencing emotions engages high-order orbitofrontal and medial prefrontal areas, and expressing emotions involves low-level autonomic structures and peripheral organs. How is information from the cortex transmitted to the periphery? We used two parallel approaches to map simultaneously multiple pathways to determine if hypothalamic autonomic centres are a key link for orbitofrontal areas and medial prefrontal areas, which have been associated with emotional processes, as well as low-level spinal and brainstem autonomic structures. The latter innervate peripheral autonomic organs, whose activity is markedly increased during emotional arousal. RESULTS: We first determined if pathways linking the orbitofrontal cortex with the hypothalamus overlapped with projection neurons directed to the intermediolateral column of the spinal cord, with the aid of neural tracers injected in these disparate structures. We found that axons from orbitofrontal and medial prefrontal cortices converged in the hypothalamus with neurons projecting to brainstem and spinal autonomic centers, linking the highest with the lowest levels of the neuraxis. Using a parallel approach, we injected bidirectional tracers in the lateral hypothalamic area, an autonomic center, to label simultaneously cortical pathways leading to the hypothalamus, as well as hypothalamic axons projecting to low-level brainstem and spinal autonomic centers. We found densely distributed projection neurons in medial prefrontal and orbitofrontal cortices leading to the hypothalamus, as well as hypothalamic axonal terminations in several brainstem structures and the intermediolateral column of the spinal cord, which innervate peripheral autonomic organs. We then provided direct evidence that axons from medial prefrontal cortex synapse with hypothalamic neurons, terminating as large boutons, comparable in size to the highly efficient thalamocortical system. The interlinked orbitofrontal, medial prefrontal areas and hypothalamic autonomic centers were also connected with the amygdala. CONCLUSIONS: Descending pathways from orbitofrontal and medial prefrontal cortices, which are also linked with the amygdala, provide the means for speedy influence of the prefrontal cortex on the autonomic system, in processes underlying appreciation and expression of emotions

    Consolidation of long-term memory: Evidence and alternatives.

    Get PDF
    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be implemented in the brain. Moreover, consolidation is contrasted with alternative theories of the Ribot gradient. Consolidation theory, multiple trace theory, and semantization can all handle some findings well but not others. Conclusive evidence for or against consolidation thus remains to be found

    Integrating incremental learning and episodic memory models of the hippocampal region.

    Get PDF
    By integrating previous computational models of corticohippocampal function, the authors develop and test a unified theory of the neural substrates of familiarity, recollection, and classical conditioning. This approach integrates models from 2 traditions of hippocampal modeling, those of episodic memory and incremental learning, by drawing on an earlier mathematical model of conditioning, SOP (A. Wagner, 1981). The model describes how a familiarity signal may arise from parahippocampal cortices, giving a novel explanation for the finding that the neural response to a stimulus in these regions decreases with increasing stimulus familiarity. Recollection is ascribed to the hippocampus proper. It is shown how the properties of episodic representations in the neocortex, parahippocampal gyrus, and hippocampus proper may explain phenomena in classical conditioning. The model reproduces the effects of hippocampal, septal, and broad hippocampal region lesions on contextual modulation of classical conditioning, blocking, learned irrelevance, and latent inhibition

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    How Emotion Strengthens the Recollective Experience: A Time-Dependent Hippocampal Process

    Get PDF
    Emotion significantly strengthens the subjective recollective experience even when objective accuracy of the memory is not improved. Here, we examine if this modulation is related to the effect of emotion on hippocampal-dependent memory consolidation. Two critical predictions follow from this hypothesis. First, since consolidation is assumed to take time, the enhancement in the recollective experience for emotional compared to neutral memories should become more apparent following a delay. Second, if the emotion advantage is critically dependent on the hippocampus, then the effects should be reduced in amnesic patients with hippocampal damage. To test these predictions we examined the recollective experience for emotional and neutral photos at two retention intervals (Experiment 1), and in amnesics and controls (Experiment 2). Emotional memories were associated with an enhancement in the recollective experience that was greatest after a delay, whereas familiarity was not influenced by emotion. In amnesics with hippocampal damage the emotion effect on recollective experience was reduced. Surprisingly, however, these patients still showed a general memory advantage for emotional compared to neutral items, but this effect was manifest primarily as a facilitation of familiarity. The results support the consolidation hypothesis of recollective experience, but suggest that the effects of emotion on episodic memory are not exclusively hippocampally mediated. Rather, emotion may enhance recognition by facilitating familiarity when recollection is impaired due to hippocampal damage

    The cingulate cortex and limbic systems for emotion, action, and memory

    Get PDF
    Evidence is provided for a new conceptualization of the connectivity and functions of the cingulate cortex in emotion, action, and memory. The anterior cingulate cortex receives information from the orbitofrontal cortex about reward and non-reward outcomes. The posterior cingulate cortex receives spatial and action-related information from parietal cortical areas. It is argued that these inputs allow the cingulate cortex to perform action–outcome learning, with outputs from the midcingulate motor area to premotor areas. In addition, because the anterior cingulate cortex connects rewards to actions, it is involved in emotion; and because the posterior cingulate cortex has outputs to the hippocampal system, it is involved in memory. These apparently multiple different functions of the cingulate cortex are related to the place of this proisocortical limbic region in brain connectivity

    Robust Reproducible Resting State Networks in the Awake Rodent Brain

    Get PDF
    Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed

    Psychedelics, meditation, and self-consciousness

    Get PDF
    In recent years, the scientific study of meditation and psychedelic drugs has seen remarkable developments. The increased focus on meditation in cognitive neuroscience has led to a cross-cultural classification of standard meditation styles validated by functional and structural neuroanatomical data. Meanwhile, the renaissance of psychedelic research has shed light on the neurophysiology of altered states of consciousness induced by classical psychedelics, such as psilocybin and LSD, whose effects are mainly mediated by agonism of serotonin receptors. Few attempts have been made at bridging these two domains of inquiry, despite intriguing evidence of overlap between the phenomenology and neurophysiology of meditation practice and psychedelic states. In particular, many contemplative traditions explicitly aim at dissolving the sense of self by eliciting altered states of consciousness through meditation, while classical psychedelics are known to produce significant disruptions of self-consciousness, a phenomenon known as drug-induced ego dissolution. In this article, we discuss available evidence regarding convergences and differences between phenomenological and neurophysiological data on meditation practice and psychedelic drug-induced states, with a particular emphasis on alterations of self-experience. While both meditation and psychedelics may disrupt self-consciousness and underlying neural processes, we emphasize that neither meditation nor psychedelic states can be conceived as simple, uniform categories. Moreover, we suggest that there are important phenomenological differences even between conscious states described as experiences of self-loss. As a result, we propose that self-consciousness may be best construed as a multidimensional construct, and that “self-loss,” far from being an unequivocal phenomenon, can take several forms. Indeed, various aspects of self-consciousness, including narrative aspects linked to autobiographical memory, self-related thoughts and mental time travel, and embodied aspects rooted in multisensory processes, may be differently affected by psychedelics and meditation practices. Finally, we consider long-term outcomes of experiences of self-loss induced by meditation and psychedelics on individual traits and prosocial behavior. We call for caution regarding the problematic conflation of temporary states of self-loss with “selflessness” as a behavioral or social trait, although there is preliminary evidence that correlations between short-term experiences of self-loss and long-term trait alterations may exist
    corecore