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Abstract
Evidence is provided for a new conceptualization of the connectivity and functions of the cingulate cortex in emotion, action, 
and memory. The anterior cingulate cortex receives information from the orbitofrontal cortex about reward and non-reward 
outcomes. The posterior cingulate cortex receives spatial and action-related information from parietal cortical areas. It is 
argued that these inputs allow the cingulate cortex to perform action–outcome learning, with outputs from the midcingulate 
motor area to premotor areas. In addition, because the anterior cingulate cortex connects rewards to actions, it is involved in 
emotion; and because the posterior cingulate cortex has outputs to the hippocampal system, it is involved in memory. These 
apparently multiple different functions of the cingulate cortex are related to the place of this proisocortical limbic region in 
brain connectivity.
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Introduction: the cingulate cortex and other 
limbic structures

A key area included by Broca in his limbic lobe (Broca 
1878) is the cingulate cortex, which hooks around the cor-
pus callosum. The term limbic used by Broca referred to 
structures that are at the border or edge (the literal meaning 
of limbic) of the hemispheres (when seen in medial view), 
and led to the development of the concept of a limbic system 
(Pessoa and Hof 2015). Other limbic structures include the 
hippocampus, and the amygdala (which has major connec-
tions with the orbitofrontal cortex). These structures appear 
to have very different connections and functions. The amyg-
dala and orbitofrontal cortex are key structures involved in 
emotion and reward value with connections from ventral 

stream processing areas that decode ‘what’ the stimulus is 
(Rolls 2014b, 2016a, 2019a, b). The hippocampus is a key 
structure in episodic memory with inputs from the dorsal 
stream cortical areas about space, action, and ‘where’ events 
occur, as well as from the ‘what’ ventral processing stream 
(Kesner and Rolls 2015; Rolls 2018b). Because of the dif-
ferent connectivity and functions of these limbic structures 
(amygdala, orbitofrontal cortex, and hippocampus) in emo-
tion and in memory, it has been suggested that the concept of 
a single ‘limbic system’ is not realistic, and that we should 
consider separately the connectivity and functions of differ-
ent limbic structures in emotion and memory (Rolls 2015).

However, that leaves the cingulate cortex in an interesting 
position straddling the emotional and memory domains. The 
anterior cingulate cortex receives inputs from the orbitofron-
tal cortex and amygdala which receive from ventral stream 
areas. The posterior cingulate cortex receives from dorsal 
stream areas including the parietal cortex and has connec-
tions to the hippocampal memory system. Moreover, there 
is evidence relating the cingulate cortex to what is appar-
ently something else, action–outcome learning, in which 
actions are learned to obtain goals based on the outcomes, 
the rewards and punishers, received for different actions 
(Rushworth et al. 2012; Kolling et al. 2016; Rolls 2019a).

In this paper, I provide a framework for understanding 
the connectivity and functions of the cingulate cortex, and 
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how the cingulate cortex can be involved in at least three 
important functions, emotion, action–outcome learning, and 
memory. I consider the evidence on the connectivity and 
functions of the different parts of the cingulate cortex, and 
then in the synthesis I produce an integrated conceptual-
ization of how the cingulate cortex, with its proisocortical 
structure and type of connectivity, fits in to our overall con-
ceptual understanding of the functions performed by dif-
ferent cortical areas, and by other limbic structures (Rolls 
2016a). Proisocortical areas can be understood in terms of 
brain structure and function as forming connectional bridges 
between neocortical areas and areas such as the hippocam-
pus (which is termed allocortex) (Pandya et al. 2015) (see 
“Connectivity of the cingulate cortex with the hippocampal 
memory system”). This is a conceptual review of the struc-
ture and functions of the cingulate cortex, and introduces 
new concepts on how it relates to other limbic and cortical 
structures, rather than an exhaustive review. The cytoarchi-
tectural details of the human cingulate cortex are provided 
in Fig. S1 (Vogt 2009, 2016).

Many previous contributions have been valuable in 
leading towards an understanding of the cingulate cortex 
(Devinsky et al. 1995; Vogt 2009, 2016; Rushworth et al. 
2011). This paper focusses on research on the cingulate and 
orbitofrontal cortex in primates including humans, rather 
than on research in rodents (Izquierdo 2017; Wikenheiser 
and Schoenbaum 2016), because of the great development of 
these regions in primates (Passingham and Wise 2012; Rolls 
2014a, 2018a, 2019a). For example, rodents have no poste-
rior cingulate cortex (Vogt 2009) and most of the orbito-
frontal cortex (apart from the agranular areas posteriorly) 
may not be present in rodents (Passingham and Wise 2012; 
Rolls 2019a).

An overview of the concepts about the cingulate cortex 
considered here follows, to provide a framework for under-
standing the evidence included in this paper. Some of the 
connections and regions of the cingulate cortex are shown 
in Figs. 1 and 2.

In humans, the pregenual anterior cingulate cortex 
receives information related to reward from the medial orbit-
ofrontal cortex, and related to punishment and not receiving 
reward from the lateral orbitofrontal cortex. These orbito-
frontal cortex areas represent information about value, not 
about actions or responses, as shown by neuronal record-
ings in macaques. The value representation received by the 
anterior cingulate cortex includes information about the 
outcome of actions, that is, whether reward or punishment 
has been received, and is used by the cingulate cortex for 
learning the action to perform to obtain a reward or avoid 
a punisher. This is termed ‘action–outcome learning’. The 
anterior cingulate cortex is implicated in emotion, because 
it is involved in linking reward and punishment informa-
tion, which elicit emotional responses, to behaviour, and, in 

particular, to actions. The subgenual cingulate cortex (area 
25) may link rewards and punishers to autonomic output. 
The posterior cingulate cortex receives information about 
actions from the parietal cortex, including areas 7a, VIP 
and LIP laterally, and area 7m medially (as well as some 
inputs from ventral stream temporal lobe areas) (Vogt and 
Laureys 2009). The posterior cingulate cortex is therefore 
implicated in spatial including visuospatial processing. A 
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Fig. 1  The connections of the anterior and posterior cingulate cortex 
with their input areas, and their outputs to the hippocampal memory 
system. A medial view of the macaque brain is shown below, and 
a lateral view is above. The green arrows show the convergence of 
reward or outcome information from the ACC and of information 
about actions from the posterior cingulate cortex to the midcingu-
late motor area, which then projects to premotor areas including the 
premotor cortex area 6 and the supplementary motor area. This pro-
vides connectivity for action–outcome learning. The anterior cin-
gulate cortex receives reward outcome information from the orbito-
frontal cortex (OFC). The posterior cingulate cortex (23 and 31) 
receives information about actions from the parietal cortex. This 
cingulate connectivity is compared with that of the hippocampus, 
which receives information from the ventral ‘what’ processing stream 
(blue) and the dorsal ‘where’ or ‘action’ processing stream (red), as 
described in the text. as, arcuate sulcus; cs, central sulcus; ips, intra-
parietal sulcus; ios, inferior occipital sulcus; ls, lunate sulcus; ret-
rosplenial cortex (29, 30) is the small region in primates including 
humans behind the splenium of the corpus callosum shaded grey: it 
is present in rodents, which do not have a posterior cingulate cortex 
(Vogt 2009); sts, superior temporal sulcus; 4, 6, motor and premotor 
cortex. Developed from Rolls and Wirth (2018)
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concept is that the posterior cingulate action-related infor-
mation is brought together with the anterior cingulate cor-
tex outcome-related information, and via the midcingulate 
cortex the result of action–outcome learning can influence 
premotor areas that receive information from the midcingu-
late cortex (Fig. 1). The posterior cingulate cortex in addi-
tion has major connectivity with parahippocampal areas 
TF and TH, which in turn project spatial information to the 
entorhinal cortex and thereby into the hippocampal episodic 
memory system. The posterior cingulate cortex provides a 
route for spatial including visuospatial information to reach 

the hippocampus, where it can be combined with object 
and reward-related information to form episodic memories 
(Rolls 2016a, 2018b; Rolls and Wirth 2018). The posterior 
cingulate cortex is thereby also implicated in memory.

These concepts show how different parts of the cingulate 
cortex can be involved in reward and punishment process-
ing and thereby in emotion; in learning actions to perform 
to obtain rewards and avoid punishers and thereby in action; 
and in memory. Because of these different functions and 
connectivities, the cingulate cortex cannot easily be consid-
ered as part of a single limbic system, but instead contributes 
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Fig. 2  Connections of the anterior cingulate cortex shown on views 
of the primate brain (see text). The arrows show the main direction 
of connectivity, but there are connections in both directions. The sup-
racallosal anterior cingulate cortex is also termed the anterior part 
of the midcingulate cortex, and is distinct from the posterior part of 
the midcingulate cortex (pMidcingulate). Connections reach the pre-
genual cingulate cortex especially from the medial/mid-orbitofrontal 
cortex; and reach the supracallosal anterior cingulate cortex espe-
cially from the lateral orbitofrontal cortex. Connections to the ante-
rior cingulate cortex from the temporal lobe are from the (auditory) 
superior temporal gyrus (STG), from the visual and auditory cortex 
in the superior temporal sulcus; and from the amygdala. as, arcuate 
sulcus; cc, corpus callosum; cf., calcarine fissure; cgs, cingulate sul-

cus; cs, central sulcus; ls, lunate sulcus; ios, inferior occipital sulcus; 
mos, medial orbital sulcus; os, orbital sulcus; ps, principal sulcus; sts, 
superior temporal sulcus; Sf, Sylvian (or lateral) fissure (which has 
been opened to reveal the insula); Am, amygdala; INS, insula; TE 
(21), inferior temporal visual cortex; STG (22), superior temporal 
gyrus auditory association cortex; TF and TH, parahippocampal cor-
tex; TPO, multimodal cortical area in the superior temporal sulcus; 
38, TG, temporal pole cortex; 13, 11, medial orbitofrontal cortex; 12, 
lateral orbitofrontal cortex; 23, 31 posterior cingulate cortex; 29, 31 
retrosplenial cortex; 51, olfactory (prepyriform and periamygdaloid) 
cortex. A cytoarchitectural map of the human cingulate cortex is pro-
vided in Fig. S1
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to some of the different functions performed by different 
limbic structures that are related to their connections to dif-
ferent neocortical areas (Rolls 2015).

The anterior cingulate cortex

Conceptual framework

The anterior cingulate cortex (ACC), itself a limbic struc-
ture, has connections with a set of other limbic and related 
areas including the amygdala and orbitofrontal cortex (OFC) 
involved in emotion and reward-related processing (see 
Fig. 1, and for details “Anterior cingulate cortex: anatomy 
and connections”) (Rolls 2014a, 2018a). This set of limbic 
and related structures related to the ventral or ‘what’ pro-
cessing streams (Ungerleider and Haxby 1994), and these 
ventral processing streams themselves, provide a major 
source of ‘what’ and ‘reward’ input into the hippocampal 
memory system via the perirhinal and entorhinal cortex 
(blue in Fig. 1) (Rolls 2018b; Rolls and Wirth 2018).

The posterior cingulate cortex has connections from 
parietal structures such as the precuneus and lateral parietal 
areas and is involved in spatio-topographical and related 
memory functions (Cavanna and Trimble 2006; Rolls 2015; 
Rolls and Wirth 2018; Leech and Sharp 2014; Kircher et al. 
2002; Vogt 2009; Vogt and Pandya 1987; Vogt and Laureys 
2009). This limbic region related to the dorsal or ‘where’ 
processing systems (Ungerleider and Haxby 1994) provides 
a second major source of input into the hippocampal mem-
ory system, via the parahippocampal gyrus (areas TF and 
TH) and the entorhinal cortex (red in Fig. 1) (Rolls 2018b; 
Rolls and Wirth 2018). Because the ACC and its related lim-
bic areas, and the posterior cingulate cortex and its related 
areas, have such different connections and functions, it has 
been argued that we should no longer think of a single lim-
bic system, but instead of two (or more) limbic processing 
systems (Rolls 2015).

However, a key concept is that the orbitofrontal/anterior 
cingulate/amygdala set of limbic areas related to ventral 
steam processing, and the posterior cingulate cortex related 
to dorsal stream processing, enable the ventral and dorsal 
processing streams to be brought together in the hippocam-
pus, so that we can form memories of ‘what’ happened 
‘where’, which is prototypical of episodic memory (Rolls 
2016a, 2018b; Kesner and Rolls 2015). In an interesting 
twist, there is in fact a connection from the orbitofrontal 
cortex to the posterior cingulate cortex (Vogt and Laureys 
2009), which provides a path for reward- and punishment-
related information to enter the hippocampus via the dorsal 
route as well as by the ventral route (Rolls 2018b; Rolls and 
Wirth 2018).

This conceptual framework is developed a little more 
next, with the more detailed evidence provided later. It 
should be noted that this framework applies to primates 
including humans, with the principles of operation being 
considerably different in rodents, due to the much less well-
developed orbitofrontal cortex, and visual and even taste 
cortical processing areas (Rolls 2016a, 2018a, 2019a).

The orbitofrontal cortex represents the reward value of 
stimuli (Rolls 2000, 2014a, 2018a, 2019a, b; Tremblay and 
Schultz 1999; Rolls et al. 1989; Small et al. 2001). It is in a 
sense an output region for all the sensory systems, includ-
ing taste, olfaction, visual, auditory, and somatosensory, that 
represents ‘what’ a stimulus is, and uses that information to 
build what are frequently multimodal representations but in 
value space rather than in ‘what’ or stimulus identity space. 
Orbitofrontal cortex neurons focus on reward value repre-
sentations for stimuli and know little about actions.

The orbitofrontal cortex sends inputs to the ACC about 
the value of stimuli, that is, about goals including the value 
of outcomes (the reward received) and the expected value. 
The ACC in combination with the midcingulate motor 
area, which contains representations of actions, interfaces 
actions to outcomes (rewards or punishers received) using 
action–outcome learning, and also takes into account the 
cost of actions to obtain the goal when selecting actions 
(Rushworth et al. 2012; Kolling et al. 2016; Rolls 2019a). 
The anterior and midcingulate cortical areas are thus rel-
evant to emotion, for they implement the instrumental goal-
directed actions that the instrumental reinforcers involved in 
emotion produce (Rolls 2014a, 2019a, b). In the context of 
its representations of value, damage to the anterior cingulate 
areas does influence emotion (Rolls 2014a, 2019a).

The ACC operates as a system that performs goal-
directed actions to obtain rewards and avoid punishers, and 
takes into account the outcomes received after actions, in 
that it is sensitive to devaluation of the goal, and will not 
select an action if the goal has been devalued. This is in con-
trast to the basal ganglia, which implement a stimulus–motor 
response mapping which becomes automated as a habit after 
much learning, and is not sensitive to devaluation of the goal 
(Rolls 2014a, 2019a, b).

Anterior cingulate cortex: anatomy and connections

The ACC areas occupy approximately the anterior third 
of the cingulate cortex (Fig. 2). They are separate from a 
midcingulate/cingulate motor area (Vogt 2009; Vogt et al. 
2003) that may be involved in action selection (Rushworth 
et al. 2004, 2011; Noonan et al. 2011). The ACC includes 
area 32, the pregenual cingulate cortex (where genu refers 
to the knee of the corpus callosum); area 25, the subgenual 
cingulate cortex; and a part of area 24 (Fig. 2) (Price 2006a, 
b; Öngür et al. 2003; Ongür and Price 2000). [It is however 
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noted that the midcingulate cortex has been described as 
having an anterior and a posterior part, with the criteria 
including cytoarchitecture (Vogt 2016) (see Fig. S1), and 
that the anterior part may overlap with or be similar to what 
is described as the supracallosal part of the ACC in “Ante-
rior cingulate cortex: functional neuroimaging and neuronal 
activity”.]

As shown in Fig. 2, the ACC receives strong inputs from 
the orbitofrontal cortex (Carmichael and Price 1995; More-
craft and Tanji 2009; Vogt 2009; Carmichael and Price 
1996; Devinsky et al. 1995; Vogt and Pandya 1987; Vogt 
2019). The ACC is also characterized by connections with 
the amygdala (Carmichael and Price 1995; Morecraft and 
Tanji 2009; Vogt 2009). The ACC also has connections with 
some temporal cortical areas involved in memory includ-
ing the parahippocampal gyrus (which provides via the 
entorhinal cortex a bridge to the hippocampus); and with 
the rostral superior temporal gyrus, the auditory superior 
temporal gyrus, and the dorsal bank of the superior temporal 
sulcus (Vogt 2009; Rolls 2016a, 2018b; Saleem et al. 2008; 
Insausti et al. 1987) (see Fig. 2). [The cortex in the superior 
temporal sulcus contains visual neurons that respond to face 
expression, gesture, and head movement (Hasselmo et al. 
1989a, b).]

In more detail, a ‘medial prefrontal network’ (mainly 
ACC) selectively involves medial areas 14r, 14c, 24, 25, 32, 
and 10m, rostral orbital areas 10o and llm, and agranular 
insular area Iai in the posterior orbital cortex in macaques 
(Carmichael and Price 1996). An ‘orbital’ prefrontal net-
work links most of the areas within the orbital cortex, includ-
ing areas Iam, Iapm, Ial, 121, 12m, and 12r in the caudal and 
lateral parts of the orbital cortex, with areas 131, 13m, and 
13b in the central orbital cortex, which have further onward 
connections to the rostral orbital area 11l (Carmichael and 
Price 1996; Price 2006b; Ongür and Price 2000). Several 
orbital areas (including 13a, 12o, and 11m) have connec-
tions with both the medial and orbital networks. Many of 
these areas are shown in Fig. 2. It is very interesting that this 
medial prefrontal network has connections with the posterior 
cingulate/retrosplenial cortex and parahippocampal cortex 
(Saleem et al. 2008), and has access to the hippocampus in 
this way, whereas the orbitofrontal cortex has projections 
to the perirhinal cortex (Saleem et al. 2008), and thus has 
access to the hippocampus via a more ventral route (Fig. 1).

A very interesting new finding about ACC connectivity 
in relation to what follows is that the medial orbitofrontal 
cortex has strong functional connectivity with the pregenual 
cingulate cortex, in both of which rewards are represented; 
and that the lateral orbitofrontal cortex (and inferior frontal 
gyrus) has strong functional connectivity with the supra-
callosal, more dorsal, ACC area, both of which are acti-
vated by unpleasant aversive stimuli (Rolls et al. 2018). This 
was shown in a resting state fMRI investigation with 254 

healthy participants (Rolls et al. 2018). [Functional connec-
tivity refers to correlations between the fMRI BOLD signal 
in different brain regions, and may include trans-synaptic 
effects as well as reflecting direct connections (Van Essen 
et al. 2019). The concept is that brain areas with high cor-
relations in their signals are likely to have direct or indirect 
connections. I aim to include the term ‘functional’ when this 
type of connectivity is referred to.] Parcellation (to identify 
different clusters of voxels with similar functional connectiv-
ity) was performed based on the functional connectivity of 
individual ACC voxels in the control participants (Fig. 3). 
(The functional connectivity was measured by the correla-
tion of the resting state fMRI signals between pairs of vox-
els.) A pregenual and subcallosal subdivision (1, green) has 
strong functional connectivity with the medial orbitofrontal 
cortex and connected areas (Fig. 3), which are implicated 
in reward (Fig. 4). The supracallosal subdivision (2, red), 
which is activated by unpleasant stimuli and non-reward, 
has high functional connectivity with the lateral orbitofron-
tal cortex and adjacent inferior frontal gyrus areas (Fig. 3), 
also activated by unpleasant stimuli (Fig. 4) (Rolls et al. 
2018). These functional connectivities provide support for 
the hypothesis that the reward-related medial orbitofrontal 
cortex provides inputs to the pregenual cingulate cortex, 
also activated by rewards; and that the lateral orbitofrontal 
cortex, implicated in effects of non-reward and punishers, 
provides inputs to the supracallosal part of the ACC, which 
is also activated by unpleasant stimuli (Rolls et al. 2018; 
Rolls 2019a). 

It should be noted that the medial prefrontal network 
includes area 14 (gyrus rectus) in the most medial part of 
the orbital cortex, and that area 14 should not be included 
in Price and colleagues’ ‘orbital prefrontal network’ (Car-
michael and Price 1996). Their ‘orbital prefrontal network’ 
includes areas on the posterior, central and lateral, orbital 
surface (agranular insular areas Ial, Iam, Iapl and Iapm, 
and orbital areas 13b, 13l, 13m, 11l, 12r, 12m and 12l, see 
Fig. 2), which is described as the orbitofrontal cortex (Rolls 
2014a, 2018a, 2019a, b). The term ‘ventromedial prefrontal 
cortex’ (vmPFC) is not well defined anatomically, and refers 
generally to a medial and ventral region of the prefrontal cor-
tex which probably can be taken to include the ventral parts 
of the ‘medial prefrontal network’ of Price and colleagues, 
and also probably medial parts of the orbitofrontal cortex 
and medial area 10 (Rolls 2019a). Indeed, different parts of 
the ventromedial prefrontal cortex have different functional 
connectivity with other brain areas (Rolls et al. 2019a). The 
ventromedial prefrontal cortex may play a particular role in 
decision-making, especially in the choice between different 
rewards (Grabenhorst and Rolls 2011; Rolls et al. 2010a, b; 
Glascher et al. 2012; Rolls 2019a).

The outputs of the ACC reach further back in the cingu-
late cortex towards the midcingulate cortex, which includes 
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the cingulate motor area (Vogt 2009; Vogt et al. 1996; More-
craft and Tanji 2009; Vogt 2016). The ACC also projects 
forward to the medial prefrontal cortex area 10 (Price 2006b; 

Ongür and Price 2000). Another route for output is via the 
projections to the striatum/basal ganglia system. The con-
nections with the temporal lobe have been described above 

Fig. 3  Voxel-level parcellation of the left anterior cingulate cortex 
(ACC) based on its functional connectivity in healthy individuals 
with other brain areas. The correlations (r) are the distance from the 
centre of the circular plot. The pregenual and subcallosal subdivision 
(1, green) has strong functional connectivity with the medial orbito-
frontal cortex and connected areas (AAL2 areas from OLF to OFC-

post). The supracallosal subdivision (2, red) has strong functional 
connectivity with the lateral orbitofrontal cortex area IFGorb and 
with adjacent inferior frontal gyrus areas (IFGtriang to IFGoperc). 
The parcellation was similar on the right. The AAL2 is the automated 
anatomical labelling atlas, which shows the abbreviations used (Rolls 
et al. 2015)
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vide references to the original studies.]
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(Saleem et al. 2008). The ACC, including the subgenual 
cingulate cortex area 25, has outputs that can influence auto-
nomic/visceral function via the hypothalamus, midbrain per-
iaqueductal grey, and insula, as does the orbitofrontal cortex 
(Rempel-Clower and Barbas 1998; Critchley and Harrison 
2013; Price 2006b; Ongür and Price 2000).

Anterior cingulate cortex: functional neuroimaging 
and neuronal activity

A framework

The pregenual and the adjoining dorsal supracallosal ante-
rior cingulate areas (Fig. 2) can be thought of as areas that 
allow information about rewards and outcomes received 
from the orbitofrontal cortex to be linked, via the cingulum 
fibre bundle, to action-related information in the midcin-
gulate cortex (Fig. 1). The orbitofrontal cortex represents 
value, but not actions or behavioural responses (Thorpe 
et al. 1983; Rolls 2019a, b; Padoa-Schioppa and Assad 
2006; Grattan and Glimcher 2014), and therefore projects 
value-related information to the ACC where the value-
related information can be used to guide actions. Combin-
ing in the cingulate cortex information about particular 
rewards received for particular actions, and the particular 
costs involved, is essential for associating actions with the 
value of their outcomes, to select an action that will lead to 
the desired goal (Walton et al. 2003; Rushworth et al. 2007, 
2011; Grabenhorst and Rolls 2011; Rolls 2014a; Kolling 
et al. 2016). Indeed, consistent with its strong connections to 
motor areas (Morecraft and Tanji 2009), lesions of the ACC 
impair reward-guided action selection (Rudebeck et al. 2008; 
Kennerley et al. 2006); in humans, the ACC is activated 
when information about outcomes guides choices (Walton 
et al. 2004), and neurons in the ACC encode information 
about actions, outcomes, and prediction errors for actions 
(Matsumoto et al. 2007; Luk and Wallis 2009; Kolling et al. 
2016). For example, if information about three possible out-
comes (different juice rewards) had to be associated with two 
different actions, information about both specific actions and 
specific outcomes was encoded by neurons in the ACC (Luk 
and Wallis 2009).

Pregenual anterior cingulate representations of reward 
value, and supracallosal anterior cingulate representations 
of punishers and non‑reward

Functional magnetic resonance neuroimaging (fMRI) stud-
ies provide evidence for somewhat separate representa-
tions of rewarding, positively affective (pleasant) stimuli in 
the pregenual cingulate cortex (yellow in Fig. 4), and of 
negative, unpleasant, stimuli just posterior to this above the 
corpus callosum in the ACC (white in Fig. 4) (Rolls 2009; 

Grabenhorst and Rolls 2011). Pain activates an area typi-
cally 10–30 mm posterior to and above the most anterior 
(i.e. pregenual) part of the ACC (Fig. 4) (Rolls et al. 2003b; 
Vogt et al. 1996; Vogt and Sikes 2000). Pleasant touch acti-
vated the pregenual cingulate cortex (Fig. 4) (Rolls et al. 
2003b; McCabe et al. 2008). Pleasant temperature applied 
to the hand also produces a linear activation proportional to 
its subjective pleasantness in the pregenual cingulate cor-
tex (Rolls et al. 2008b). Somatosensory oral stimuli includ-
ing viscosity and the pleasantness of the texture of fat in 
the mouth also activate the pregenual cingulate cortex (de 
Araujo and Rolls 2004; Grabenhorst et al. 2010b). Pleasant 
(sweet) taste also activates the pregenual cingulate cortex 
(de Araujo et al. 2003a; de Araujo and Rolls 2004) where 
attention to pleasantness (Grabenhorst and Rolls 2008) and 
cognition (Grabenhorst et al. 2008a) also enhances activa-
tions. Pleasant odours also activate the pregenual cingulate 
cortex (Rolls et al. 2003a), and these activations are modu-
lated by word-level top-down cognitive inputs that influ-
ence the pleasantness of odours (de Araujo et al. 2005), and 
also by top-down inputs that produce selective attention to 
odour pleasantness (Rolls et al. 2008a). Unpleasant odours 
activate further back in the ACC (Rolls et al. 2003a). The 
pregenual cingulate cortex is also activated by the ‘taste’ of 
water when it is rewarding because of thirst (de Araujo et al. 
2003b), by the flavour of food (Kringelbach et al. 2003), and 
by monetary reward (O’Doherty et al. 2001). Moreover, the 
outcome value and the expected value of monetary reward 
activate the pregenual cingulate cortex (Rolls et al. 2008c). 
Figure 4 shows the sites of some of these activations.

In these studies, the anterior cingulate activations were 
linearly related to the subjective pleasantness or unpleas-
antness of the stimuli, providing evidence that the ACC 
represents value on a continuous scale (Fig. 4), which is 
characteristic of what is found in the sending region, the 
orbitofrontal cortex (Rolls 2019a, b). Moreover, evidence 
was found that there is a common scale of value in the pre-
genual cingulate cortex, with the affective pleasantness of 
taste stimuli and of thermal stimuli delivered to the hand 
producing identically scaled BOLD activations (Grabenhorst 
et al. 2010a). The implication is that the ACC contains a 
value representation used in decision-making, but that the 
decision itself may be made elsewhere. Decisions about 
actions that reflect the outcomes represented in the ACC 
may be made further posterior towards the midcingulate cor-
tex. Decisions about the value of stimuli may be made in the 
medial prefrontal cortex area 10 (or ventromedial prefrontal 
cortex, VMPFC) as shown by fMRI evidence (Grabenhorst 
et al. 2008b; Rolls and Grabenhorst 2008; Rolls et al. 2010a, 
b). Consistent with this, in macaques single neurons in the 
ventromedial prefrontal cortex rapidly come to signal the 
value of the chosen offer, suggesting the circuit serves to 
produce a choice (Strait et al. 2014), consistent with the 
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attractor model of decision-making (Rolls et  al. 2010a, 
b; Rolls 2014a, 2016a). [The attractor model of decision-
making is a neuronal network with associatively modifiable 
recurrent collateral synapses between the neurons of the type 
prototypical of the cerebral cortex. The decision variables 
are applied simultaneously, and the network, after previous 
training with these decision variables, reaches a state where 
the population of neurons representing one of the decision 
variables has a high firing rate (Rolls and Deco 2010; Deco 
et al. 2013; Rolls 2016a).] The ventromedial prefrontal cor-
tex receives inputs from the orbitofrontal cortex (and also 
from the ACC).

Value representations in the pregenual cingulate cortex 
are confirmed by recording studies in monkeys (Rolls 2008; 
Kolling et al. 2016). For example, Gabbott, Verhagen, Kado-
hisa and Rolls found neurons in the pregenual cingulate cor-
tex that respond to taste, and it was demonstrated that the 
representation is of reward value, for devaluation by feeding 
to satiety selectively decreased neuronal responses to the 
food with which the animal was satiated (Rolls 2008).

This evidence supports the framework that the value 
representations computed in the orbitofrontal cortex where 
there is little representation of action are transferred to the 
anterior cingulate cortex, where they can be used as the rep-
resentation of reward vs non-reward or punishment outcome 
to be associated with representations of actions as part of 
goal-dependent action–outcome learning.

Anterior cingulate cortex and action–outcome 
representations

Some single neuron studies indicating encoding of actions 
and outcomes have often involved rather dorsal recordings 
above the pregenual cingulate cortex in the dorsal ACC (dor-
sal bank of the cingulate sulcus) (Matsumoto et al. 2007; 
Luk and Wallis 2009; Kolling et al. 2016). In a similar area, 
action–outcome associations are represented, in that while 
a monkey was looking at a visual cue, before an action was 
made, the activity of ACC neurons was related to the expec-
tation of reward or non-reward (25%), the intention to move 
or not (25%), or a combination of both reward expectation 
and intention to move (11%) (Matsumoto et al. 2007). Luk 
and Wallis (2013) described recordings in the same dorsal 
ACC area that reflected the outcomes when monkeys made 
a choice of a left or right lever response to obtain a reward 
outcome, and also described a weak dissociation for more 
stimulus–outcome neurons in the orbitofrontal cortex, that 
is when monkeys had to choose the reward outcome based 
on which visual stimulus was shown. In the same dorsal 
anterior cingulate area, neurons were more likely to take into 
account the costs of the actions needed to obtain rewards, 
as well as the probability of obtaining the reward, than were 
orbitofrontal cortex neurons (Kennerley and Wallis 2009; 

Kennerley et al. 2011; Kolling et al. 2016). In the dorsal 
ACC, neurons may reflect evidence about the several most 
recent rewards, and use this to help guide choices (Kolling 
et al. 2016). More ventrally in the ACC, neurons are more 
likely to reflect reward outcome rather than primarily 
actions, and the outcome representation trailed that in the 
orbitofrontal cortex (Cai and Padoa-Schioppa 2012). These 
findings are consistent with the hypothesis developed here 
and elsewhere (Rolls 2019a) that the orbitofrontal cortex 
represents value but not actions, and takes decisions based 
on reward value, and that value information is transmitted 
from the orbitofrontal cortex to the ACC, where there are 
action-related neurons, and where action–outcome learning 
takes place.

Foraging studies also implicate the ACC in representing 
value, and in taking into account costs. For example, some 
neurons responded at higher rates when the monkeys were 
about to move to another foraging patch, and the threshold 
amount of this firing before the monkey switched to a new 
patch depended on the cost of switching (the delay before 
foraging in the new patch could resume) (Hayden et al. 
2011). Consistent with this, the costs of actions can influ-
ence reward value representations in the macaque orbito-
frontal cortex, even though the actions themselves are not 
represented in the orbitofrontal cortex (Cai and Padoa-Schi-
oppa 2019).

In a neuroimaging study that provides evidence that the 
ACC is active when outcome information guides choices 
made by the individual (Walton et al. 2004), the activations 
were relatively far back in the ACC (y = 22) towards the 
midcingulate cortex. This supports the hypothesis provided 
above that the reward value information in the pregenual 
cingulate cortex and the negative value representations in 
the supracallosal ACC are projected posteriorly towards the 
midcingulate area for interfacing to action.

Anterior cingulate cortex lesion effects

Lesion studies in humans (Camille et al. 2011) and macaques 
(Rudebeck et al. 2008) have provided evidence for a disso-
ciation in the role of the ACC in action–outcome associa-
tions to guide behaviour; and of the orbitofrontal cortex in 
stimulus–outcome associations to update the expected value 
(Rushworth et al. 2012). Lesions of the ACC in rats impair 
the ability to take account of the costs of actions, and there 
is a complementary human neuroimaging study (Croxson 
et al. 2009).

An investigation more closely related to the understand-
ing of emotion showed that patients with selective surgical 
lesions of the anterior ventral part of the ACC and/or medial 
prefrontal cortex area BA9 were impaired on voice and face 
expression identification, had changed social behaviour, such 
as inappropriateness, and had changes in their subjectively 
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experienced emotions (Hornak et al. 2003). In line with 
these results in humans, reduced social vocalization and 
social and emotional changes were found in monkeys with 
anterior cingulate lesions (Hadland et al. 2003).

Complementing the human anterior cingulate damage 
effects on voice and in some cases face expression identifi-
cation (Hornak et al. 2003), neuroimaging studies of vocal 
expression identification have reported orbital and medial 
prefrontal/cingulate activation. For example, non-verbal 
sounds expressing fear, sadness, and happiness activated 
orbital cortex BA11 and medial BA9 (Morris et al. 1996). 
Further, fearful sounds activated the ACC (BA32 and BA24) 
(Phillips et al. 1998). Facial expression identification pro-
duces activation in orbital and medial regions that include 
BA32/24 (anterior cingulate) and medial BA9 (Blair et al. 
1999; Dolan et al. 1996; Nakamura et al. 1999).

Complementing the human anterior cingulate damage 
effects on the subjective experience of emotion (Hornak 
et al. 2003), activations were found in the ventral ACC and 
medial BA9 during self-generated emotional experience 
when participants recalled emotions of sadness or happi-
ness (Lane et al. 1997a, b, 1998).

Based on this evidence, the hypothesis is that the ACC 
receives inputs from the orbitofrontal cortex and amygdala 
about expected rewards and punishers, and about the out-
comes, the rewards and punishers (which include face and 
voice expression) received, and that these are used as the 
value representations in action–outcome learning performed 
in the cingulate cortex.

Subgenual cingulate cortex

The subgenual part of the anterior cingulate cortex (areas 
25, s24, s32, and the ventral portion of area 33 (Palomero-
Gallagher et al. 2015) see Fig. S1) has outputs to the hypo-
thalamus and brainstem autonomic regions, and is involved 
in the autonomic components of emotion (Koski and Paus 
2000; Barbas and Pandya 1989; Ongür and Price 2000; Gab-
bott et al. 2003; Vogt 2009). Area s32 was co-activated with 
areas of the executive control network, and was associated 
with tasks probing cognition in which stimuli did not have 
an emotional component (Palomero-Gallagher et al. 2015). 
Area 33 was activated by painful stimuli and co-activated 
with areas of the sensorimotor network (Palomero-Gallagher 
et al. 2015). The dorsal anterior and midcingulate cortical 
areas may be especially related to blood pressure, pupil size, 
heart rate, and electrodermal activity, whereas the subgen-
ual cingulate cortex, with ventromedial prefrontal cortex, 
appears antisympathetic (and parasympathetic) (Critchley 
and Harrison 2013; Nagai et al. 2004). The subgenual cin-
gulate cortex is connected with the ventromedial prefrontal 
cortical areas (Johansen-Berg et al. 2008).

Evidence implicating the subgenual and more generally 
the subcallosal cingulate cortex in depression is described 
elsewhere (Hamani et al. 2011; Laxton et al. 2013; Rolls 
2018a; Price and Drevets 2012; Drevets et al. 2008; Holtz-
heimer et al. 2017). Interestingly, neurons in the human sub-
callosal cingulate cortex responded to emotion categories 
present in visual stimuli, with more neurons responding to 
negatively valenced than positively valenced emotion cat-
egories (Laxton et al. 2013).

Midcingulate cortex, the cingulate motor 
area, and action–outcome learning

A midcingulate area has been termed the cingulate motor 
area (Vogt 2009, 2016; Vogt et al. 1996, 2003). The midcin-
gulate area can be divided into an anterior or rostral cin-
gulate motor area (that includes 24c′ and 24a′) involved in 
skeletomotor control in for example avoidance and fear tasks 
and in action–outcome learning, and a posterior or caudal 
cingulate motor area (that includes 24d and p24′) involved in 
skeletomotor orientation (Vogt et al. 2003; Vogt 2016) (see 
Fig. S1). [As has been noted above, what has been termed 
the anterior midcingulate cortex (Vogt 2016) may overlap 
with or be similar to what is described as the supracallosal 
part of the ACC in “Anterior cingulate cortex: functional 
neuroimaging and neuronal activity”.]

This midcingulate cortex is activated by pain, but this 
may be related to the responses being selected (Derbyshire 
et al. 1998; Vogt et al. 1996). Social pain, for example being 
excluded from a social group, can also activate both the ante-
rior cingulate and the midcingulate areas (Eisenberger and 
Lieberman 2004).

In macaques, lesions of midcingulate and anterior cin-
gulate areas may affect task switching, perhaps because of 
a difficulty in monitoring error, but do not affect working 
memory (measured by delayed alternation) (Rushworth et al. 
2003, 2004).

The anterior/midcingulate cortex is activated in humans 
when there is conflict between possible responses, or when 
there is a change in response set, but not when only stimulus 
selection is involved (Rushworth et al. 2002).

Errors made in many tasks activate the anterior/midcin-
gulate cortex, whereas tasks with response conflict activate 
the superior frontal gyrus (Rushworth et al. 2004; Kolling 
et al. 2016; Procyk et al. 2016), and some anterior/midcin-
gulate neurons respond when errors are made (Niki and 
Watanabe 1979; Kolling et al. 2016; Procyk et al. 2016), or 
when rewards are reduced (Shima and Tanji 1998). These 
errors include errors made for incorrect actions, that is, to 
action–outcome errors, whereas the error neurons in the 
orbitofrontal cortex respond to stimulus–reward errors, 
when the reward is less than expected given the stimulus. 



 Brain Structure and Function

1 3

Thus, part of the difference is that the orbitofrontal cortex 
specializes in errors relating to stimuli and rewards associ-
ated with them, whereas the cingulate cortex specializes in 
errors relating to actions and the rewards associated with 
them (Thorpe et al. 1983; Rolls 2018a, 2019b). The error-
related negativity (ERN) potential in humans may originate 
in area 24c’ (Ullsperger and von Cramon 2001). (ERN is 
an electroencephalogram negative potential which peaks 
approximately 50–150 ms after an error is committed by a 
participant.)

Correspondingly, in rodents a part of the medial prefron-
tal/anterior cingulate cortex termed the prelimbic cortex is 
involved in learning relations between actions and reinforc-
ers/outcomes (Balleine and Dickinson 1998; Cardinal et al. 
2002; Killcross and Coutureau 2003). The rodent prelimbic 
cortex may also take into account costs of actions, in that 
rats with prelimbic cortex lesions were impaired when they 
had to decide about an action with a large reward but a high 
barrier to climb, vs an action with a low reward but no bar-
rier (Walton et al. 2002, 2003).

The concept is advanced that the midcingulate cortex 
may be part of a cingulate system that enables reward out-
come information from the orbitofrontal cortex to be asso-
ciated with action information from the posterior cingulate 
cortex, with the output directed to premotor cortical areas. 
Consistent with this, the anterior part of the midcingulate 
cortex, aMCC in Fig. S1, is described as anticipating and 
signalling motivationally relevant targets, encoding reward 
values, signalling errors, and influencing motor responses 
(Bush 2011). It has been suggested that the aMCC goal and 
feedback information is used to modulate activity in execu-
tive brain regions that direct attention and produce motor 
responses, and is thereby relevant to attention-deficit hyper-
activity disorder (Bush 2011).

The posterior cingulate cortex

The posterior cingulate cortex receives major inputs from 
parietal cortical areas that receive from the dorsal visual 
stream and somatosensory areas, and is involved in spatial 
processing, action in space, and some types of memory 
(Vogt 2009; Vogt and Pandya 1987; Vogt and Laureys 2009; 
Rolls and Wirth 2018; Rolls 2018b). Interestingly, the pos-
terior cingulate cortex also receives connections from the 
orbitofrontal cortex (Vogt and Pandya 1987; Vogt and Lau-
reys 2009) (Fig. 1). The posterior cingulate cortex is a region 
with strong connections in primates to the parahippocampal 
gyrus (areas TF and TH) and the entorhinal cortex, and thus 
via a dorsal route with the hippocampal memory system 
(Vogt and Laureys 2009; Rolls and Wirth 2018; Rolls 2018b; 
Bubb et al. 2017) (Fig. 1). Backprojections from the hip-
pocampal system to posterior cingulate and parietal areas 

are likely to be involved in memory recall (Kesner and Rolls 
2015; Rolls 2016a, 2018b).

One key and interesting concept that emerges is that orbit-
ofrontal cortex value-related information has access to the 
posterior cingulate cortex and by this dorsal route into the 
hippocampal memory system, as well as by the ventral route 
via the perirhinal and (lateral) entorhinal cortex via which 
object-related information reaches the hippocampal memory 
system (Fig. 1) (Rolls and Wirth 2018; Rolls 2018b). The 
hippocampal memory system can then associate these three 
types of information, about what object or face is present, 
where it is in space ‘out there’ using spatial view cells, and 
combining this with information about the reward value of 
the object or position in space (Rolls 2016a, 2018b; Kesner 
and Rolls 2015; Rolls and Wirth 2018; Rolls et al. 1997, 
1998, 2005; Rolls and Xiang 2005, 2006; Robertson et al. 
1998; Georges-François et al. 1999).

Consistent with its anatomy, the posterior cingulate 
region (BA 23/31) (with the retrosplenial cortex BA 29/30) 
is consistently engaged by a range of tasks that examine 
episodic memory including autobiographical memory and 
imagining the future, and also spatial navigation and scene 
processing (Leech and Sharp 2014; Auger and Maguire 
2013). Self-reflection and self-imagery activate the ventral 
part of the posterior cingulate cortex (Kircher et al. 2000, 
2002; Johnson et al. 2002; Sugiura et al. 2005). I suggest 
that these memory-related functions, quite understandable 
in view of the connectivity of the posterior cingulate cortex 
shown in Fig. 1, account for why it is activated in the resting 
state and is included as part of the ‘default-mode’ network 
(Andrews-Hanna et al. 2010; Leech and Sharp 2014).

A second key and interesting concept is that the poste-
rior cingulate cortex and the retrosplenial cortex, which are 
both highly connected with both lateral and medial parietal 
cortex areas (Vogt 2009; Vogt and Pandya 1987; Vogt and 
Laureys 2009; Rolls and Wirth 2018; Rolls 2018b), provide 
a route for information about actions in space, represented in 
the parietal cortex by both visual spatial and somatosensory 
representations (Bisley and Goldberg 2010; Andersen et al. 
2000; Andersen 1995; Gnadt and Andersen 1988; Whitlock 
2017), to gain access to the cingulate cortex action–outcome 
learning system. The resulting concept is that the cingulate 
cortex receives action information via the parietal to poste-
rior cingulate cortex route, and reward information via the 
orbitofrontal cortex to anterior cingulate cortex route, and 
from this information associates actions with outcomes, can 
then select optimal actions given the rewards and costs, and 
can produce goal-directed actions via the cingulate motor 
area with its outputs to premotor cortical areas, as illustrated 
in Fig. 1.

Also consistent with the major anatomical connections 
of the posterior parietal cortex with both the medial and the 
lateral parietal cortical areas (Vogt 2009; Vogt and Pandya 
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1987; Vogt and Laureys 2009), which are involved in spatial 
function and spatial attention, the posterior parietal cortex 
has been implicated in spatial attention (Small et al. 2003; 
Mohanty et al. 2008) and reward-related saccades (McCoy 
et al. 2003).

The posterior cingulate cortex is implicated in some types 
of decision-making in that some neurons there respond when 
risky, uncertain choices are made (McCoy and Platt 2005); 
and some neurons respond more when an expected large 
reward is not obtained, maintaining that firing until the next 
trial (Hayden et al. 2008) [probably reflecting input from 
orbitofrontal cortex error neurons that have attractor state-
like persistent firing that encodes and maintains a negative 
reward prediction error signal (Thorpe et al. 1983; Rolls and 
Grabenhorst 2008; Rolls 2019b)].

The cingulate cortex and depression

Evidence implicating the subgenual and more generally 
the subcallosal cingulate cortex in depression includes evi-
dence that neurons in this region in humans can respond to 
unpleasant stimuli; that the subgenual cingulate cortex may 
be overactive in depression; and that deep brain stimulation 
may help to treat depression in some individuals (Hamani 
et al. 2011; Laxton et al. 2013; Rolls 2018a).

In terms of functional connectivity, voxels in the ante-
rior cingulate cortex have higher functional connectivity in 
unmedicated depressed patients with a number of brain areas 
(Rolls et al. 2018, 2019b). Higher functional connectivity 
in depression is found of the subcallosal anterior cingulate 
with the lateral orbitofrontal cortex; of the pregenual/sup-
racallosal anterior cingulate with the medial orbitofrontal 
cortex; and of parts of the anterior cingulate with the inferior 
frontal gyrus. The high functional connectivity in depression 
between the lateral orbitofrontal cortex and the subcallosal 
anterior cingulate may relate to more non-reward informa-
tion transmission to the anterior cingulate, contributing 
to depression. The high functional connectivity between 
the medial orbitofrontal cortex and supracallosal anterior 
cingulate in depression may also contribute to depressive 
symptoms, in that medial orbitofrontal cortex signals are 
being routed through a non-reward part of the ACC (Rolls 
et al. 2018).

In a resting state functional connectivity neuroimaging 
study of depression, voxels in the posterior cingulate cortex 
had higher connectivity with the lateral orbitofrontal cortex 
(Cheng et al. 2018a), involved in non-reward and thereby 
implicated in depression (Rolls 2016b, 2018a; Rolls et al. 
2019b). This connectivity was lower in medicated indi-
viduals. It was found in healthy controls that the posterior 
cingulate cortex has high functional connectivity with the 
parahippocampal regions which are involved in memory. 

These discoveries (Cheng et al. 2018a) support the theory 
that the non-reward system in the lateral orbitofrontal cor-
tex has increased effects on memory systems in depression, 
which contribute to the rumination about sad memories and 
events (Rolls 2016b, 2018a).

Synthesis

The anterior cingulate cortex and emotion

The anterior cingulate cortex receives information from its 
topologically nearby neocortical area, the orbitofrontal cor-
tex (most of which is neocortical in primates, and which 
receives from ventral stream ‘what’ areas), and also the 
amygdala (also a recipient of ventral stream projections), 
and projects this information to a number of areas, including 
autonomic areas in the brainstem as well as in the insula, to 
the midcingulate cortex, and to the striatum. Because reward 
value is important in producing emotions, the anterior cin-
gulate cortex becomes involved in emotion (Rolls 2014a, 
2018a, 2019a), and damage to it in humans can impair emo-
tions (Hornak et al. 2003). This provides for an emotion-
related function of the cingulate cortex.

Action–outcome learning

Another important function of the cingulate cortex is, via 
the midcingulate premotor area with its connections to neo-
cortical motor areas, to associate actions with outcomes, as 
indicated by the connections shown in green in Fig. 1. My 
proposal is that convergence of reward or outcome informa-
tion from the ACC, and of information about actions from 
the posterior cingulate cortex, occurs in the cingulate cortex 
leading to outputs via the midcingulate motor area, which 
projects to premotor areas including the premotor cortex 
area 6 and the supplementary motor area (see green arrows 
in Fig. 1). This provides connectivity for action–outcome 
learning (Rolls 2019a). The ACC receives reward and pun-
ishment outcome information from the orbitofrontal cortex 
(OFC). The posterior cingulate cortex receives information 
about actions from the parietal cortex. Then these two types 
of information are brought together towards the mid-part 
of the cingulate cortex including the cingulate premotor 
area (Vogt 2016), which with its connections to premotor 
neocortical areas can select the action that is most likely, 
given the action–outcome learning performed within this 
cingulate system, to obtain the goal, the desired outcome 
(Rolls 2019a).

In addition, the parietal areas have projections to medial 
frontal areas connected with the dorsal parts of the ACC 
(Vogt 2009), and these projections may also provide a 
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route for action-related information to reach the cingulate 
action–outcome learning system (Rolls 2019a).

Connectivity of the cingulate cortex 
with the hippocampal memory system

A third important function of the cingulate cortex is related 
to the hippocampal memory system, as shown in Fig. 1. This 
function is introduced by some anatomical considerations.

The cingulate cortex is largely agranular, that is, it 
does not have a well-developed layer 4 with granule cells 
(although a layer 4 is present in areas 23, 31, and 32). How-
ever, the cingulate cortex is similar to the neocortex (or iso-
cortex) in other ways, with clear layers 2 and 3, and 5 and 6. 
Indeed, the cingulate cortex has a high cell density in layers 
5 and 6. A term used to describe this cortex is proisocortex 
(Pandya et al. 2015). Another region of proisocortex is the 
posterior-most part of the primate orbitofrontal cortex which 
is agranular and includes the most posterior part of area 13. 
[The more anterior part of area 13 is granular (Rolls 2019a, 
b).] Other regions of proisocortex include the agranular ante-
rior insula, the temporal pole, the parahippocampal cortex, 
and the rostral perirhinal cortex (Pandya et al. 2015). It has 
been hypothesized that neocortical areas develop in evolu-
tion from these proisocortical areas (Pandya et al. 2015).

The connections of these proisocortical areas include 
forming connectional bridges between neocortical areas and 
areas such as the hippocampus (which is termed allocortex). 
Indeed, this is evident in Fig. 1, which shows how perirhinal 
cortex forms a bridge from the ventral stream neocortical 
areas (including temporal lobe cortical areas) to the hip-
pocampus (and back), and how the posterior cingulate cortex 
and parahippocampal cortex form a bridge from the dorsal 
stream neocortical areas (including the parietal cortex) to the 
hippocampus (and back) (via the entorhinal cortex in both 
cases). It is notable that the orbitofrontal cortex and ACC 
project information, probably about rewards, via both the 
ventral and dorsal routes, to the hippocampal system (via the 
perirhinal cortex in the ventral route; and via the posterior 
cingulate cortex in the dorsal stream to parahippocampal 
cortex connections).

This is consistent with the framework I propose that the 
cingulate cortex provides a bridge linking neocortical areas 
with the hippocampal memory system (Rolls 2018b; Rolls 
and Wirth 2018), with spatial information reaching the hip-
pocampal system via the posterior cingulate cortex, and 
reward-related information reaching the hippocampus via 
the anterior cingulate and orbitofrontal cortex (Rolls 2019a).

This cingulate connectivity is further compared with 
that of the hippocampus, which receives information from 
the ventral ‘what’ processing stream (blue) and the dorsal 
‘where’ or ‘action’ processing stream (red) in Fig. 1. The 
entorhinal cortex area 28 is the main entry for cortical 

connections to and from the hippocampus. The forward 
projections to the hippocampus are shown with large arrow-
heads, and the backprojections with small arrowheads. The 
main ventral stream connections to the hippocampus which 
convey information about objects, faces, etc. are in blue, and 
the main dorsal stream connections which convey ‘where’ 
information about space and movements are in red. The ven-
tral ‘what’ visual pathways project from the primary visual 
cortex V1 toV2, then V4, then posterior inferior temporal 
visual cortex (PIT), then anterior inferior temporal visual 
cortex (AIT), then perirhinal cortex (areas 35/36), and thus 
to entorhinal cortex (Rolls 2016a). The dorsal ‘where’ visual 
pathways project from V1 to V2, then MT (middle tem-
poral), then LIP (lateral intraparietal), then parietal area 7 
(lateral) and medial (including the precuneus), then to poste-
rior cingulate cortex areas 23/32) including the retrosplenial 
cortex (areas 29/30) and thus to theparahippocampal gyrus 
(areas TF and TH), and then entorhinal cortex. Area 22 is 
the superior temporal auditory association cortex. Reward 
information reaches the hippocampus from the orbitofrontal 
cortex (OFC), ACC (areas 32 and 25), and amygdala; but 
also via the orbitofrontal cortex to posterior cingulate cor-
tex connections. The lateral prefrontal cortex areas 9 and 
46 involved in working memory connect via the posterior 
cingulate cortex. The hippocampus enables all the high-
order cortical regions to converge into a single network in 
the hippocampal CA3 region, which is involved in episodic 
memory (Rolls 2015, 2016a; Kesner and Rolls 2015).

A difference of hippocampal connectivity therefore from 
that of the cingulate cortex is that the inputs to the hip-
pocampus from the ventral stream (blue in Fig. 1) are about 
objects and faces, etc. (from the temporal cortical visual 
areas), as well as reward information. This fits with the 
concept that the hippocampus is able to associate together 
‘what’ or reward information (blue in Fig. 1) with spatial or 
temporal information (red in Fig. 1) to enable the formation 
of episodic memories about objects and faces, and where 
they were seen on a particular occasion (Rolls 2016a, 2018b; 
Rolls and Wirth 2018; Kesner and Rolls 2015; Rolls and 
Kesner 2006). In contrast, it is argued that the cingulate cor-
tex performs the different computational function of asso-
ciating actions with outcomes, so needs reward and spatial/
action information, but less object information, and performs 
computations that may be based on several recent occasions 
in which outcomes resulted from actions (Rolls 2019a).

It should be noted that the anatomical connectivity shown 
in Fig. 1 provides two routes for reward-related information 
to reach the hippocampal memory system. The first, more 
direct, route is from the orbitofrontal and amygdala to the 
perirhinal cortex with information derived from the ven-
tral visual and auditory ‘what’ processing streams (blue in 
Fig. 1). The second route for reward-related information is 
via the ACC (which receives its reward-related information 
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from the orbitofrontal cortex) which projects to the poste-
rior cingulate cortex and also to the parahippocampal gyrus, 
providing access to the hippocampal memory system via 
the dorsal route. There are also direct projections from the 
orbitofrontal cortex to the posterior cingulate cortex (green 
in Fig. 1). The presence of reward-related information in the 
posterior cingulate cortex and its connected parietal areas is 
likely to relate to the roles of these areas in some types of 
decision-making (Hayden et al. 2008; Platt and Glimcher 
1999).

Conclusions

Overall, the conceptualization provided here of the cingulate 
cortex, a key brain region with isocortical structure, shows 
how its connections are related to both the ventral and the 
dorsal cortical processing streams; how its functions are 
important in emotion, episodic memory, and action–out-
come learning; and how its functions are related to those of 
other limbic structures including the hippocampus, and to 
the functions of different neocortical areas. Some of the key 
points that are made, some of which have not been made or 
emphasized in previous research, are as follows, and relate 
to what is shown in Fig. 1.

1. The cingulate cortex has several different functions, 
which can be related to the connections of its different 
parts. As an area of proisocortex it forms a connectional 
bridge between neocortical areas and areas such as the 
hippocampus (which is termed allocortex) (Pandya et al. 
2015). The connections can in this way be related to its 
evolutionary history as a proisocortical structure, and 
the topological position of its different parts.

2. In this framework, the posterior part, the posterior cin-
gulate cortex, receives information from the nearby 
neocortical areas such as the parietal cortex about spa-
tial representations, and projects this onwards via the 
parahippocampal cortex to the hippocampus (which is 
allocortex), where it provides the spatial component for 
object–space episodic memories. This provides for a 
memory-related function of the cingulate cortex.

3. In the same framework, the anterior cingulate cortex 
receives information from its topologically nearby neo-
cortical area, the orbitofrontal cortex (most of which is 
neocortical in primates, and which receives from ven-
tral stream ‘what’ areas), and also the amygdala (also a 
recipient of ventral stream projections), and projects this 
information to a number of areas, including autonomic 
areas in the brainstem as well as in the insula, and via 
midcingulate cortex to premotor cortical areas, and to 
the striatum. Because reward value is important in pro-
ducing emotions, the anterior cingulate cortex becomes 

involved in emotion (Rolls 2014a, 2018a, 2019a). This 
provides for an emotion-related function of the cingulate 
cortex.

4. In the same overall framework, the midcingulate cortex 
has connections to its topologically nearby neocortical 
areas, which include premotor areas. It is argued here 
that this provides for a third important function of the 
cingulate cortex, action–outcome learning, that is, the 
learning of what instrumental actions to perform to 
obtain a reward or goal. The cingulate cortex, it turns 
out, is well connected to perform this third function, 
because it receives information about the action per-
formed from the parietal areas via the posterior cingulate 
cortex, and about the reward value of the outcome from 
the orbitofrontal cortex via the anterior cingulate cortex. 
These two sources of input can then be related to each 
other via the connections in the cingulum bundle, and 
after learning, can then be projected via the midcingu-
late area to neocortical premotor areas.

The further conclusions add details to the framework 
just described.

5. The orbitofrontal cortex, which represents value and 
not actions, projects reward value information to the 
anterior cingulate cortex. Information about rewards in 
the medial orbitofrontal cortex reaches the pregenual 
cingulate cortex, and information about non-reward and 
punishers represented in the lateral orbitofrontal cortex 
reaches the supracallosal anterior cingulate cortex. This 
is shown by activation and functional connectivity stud-
ies in humans (Rolls 2018a, 2019a, b).

6. The anterior cingulate cortex represents reward value 
(received from the orbitofrontal cortex), but also 
includes representations of actions.

7. A major source of information about actions, it is 
argued, reaches the cingulate cortex from the parietal 
cortex, which has major connections with the posterior 
cingulate cortex (Vogt 2009). The parietal cortex rep-
resents actions in terms of body and eye movements in 
space (lateral parietal cortex), and of the self in a spatial 
context [medial parietal cortex including the precuneus 
(Cheng et al. 2018b)].

8. The information from the posterior parietal cortex about 
actions that are being made is projected towards the mid-
dle cingulate cortex (and probably anterior cingulate 
cortex), where it is associated with reward outcomes 
in action–outcome learning. The midcingulate cortex 
has major outputs to premotor areas, to implement the 
appropriate action given the outcomes received previ-
ously for each action. The connections for this are made 
evident in Fig. 1.
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9. The connectivity shown in Fig. 1 shows how the cingu-
late cortex is related to the hippocampal memory sys-
tem:

The ventral visual pathways for object identity and the 
orbitofrontal cortex reward value system project object and 
reward information via the perirhinal cortex and lateral 
entorhinal cortex into the hippocampal memory system.

Interestingly, the anterior cingulate cortex projects to the 
parahippocampal gyrus and via the medial entorhinal cortex 
into the hippocampus, perhaps taking this route because the 
ACC represents actions.

The posterior cingulate cortex receives spatial informa-
tion from the parietal cortex, and projects this spatial infor-
mation via the parahippocampal gyrus (areas TF and TH) 
and medial entorhinal cortex into the hippocampal memory 
system.

The hippocampus can then combine this object, reward, 
and spatial information in its CA3 network to store episodic 
memories, as described in detail elsewhere (Rolls 2016a, 
2018b; Kesner and Rolls 2015).

However, the information needs to be retrieved from the 
hippocampus. This utilizes backprojections originating in 
hippocampal CA1 back to neocortex, through the whole 
series of backprojections involving the lateral entorhinal 
cortex, and perirhinal cortex to the ventral stream areas, and 
orbitofrontal cortex, for the ventral route shown in blue in 
Fig. 1; and involving the medial entorhinal cortex, parahip-
pocampal gyrus, and posterior cingulate cortex, to the pari-
etal cortex areas, for the dorsal route shown in red in Fig. 1.

This dual backprojection system enables the object infor-
mation from an episodic memory to be recalled to the ventral 
stream areas, the reward information to the orbitofrontal cor-
tex, and the spatial information to the parietal cortex (Rolls 
2016a, 2018b; Kesner and Rolls 2015).

 10. These three functions related to different connectivity 
of the different parts of the cingulate cortex provide 
further evidence that we should no longer think of a 
single limbic system, but instead of multiple limbic 
systems (Rolls 2015).

One limbic system may involve the amygdala, orbitofron-
tal cortex, and anterior cingulate cortex for emotion.

A second limbic system may involve the hippocampus, 
perirhinal and parahippocampal cortex, and posterior cin-
gulate cortex for episodic memory, including object–spatial 
associations, object and spatial associations with temporal 
order. Reward information can also enter this hippocampal 
episodic memory system from the orbitofrontal cortex so 
that reward value information can be included in an episodic 
memory (Rolls 2016a, 2018b; Kesner and Rolls 2015; Rolls 
and Wirth 2018).

A third limbic system may involve associations with 
the cingulate cortex for action–outcome learning, with the 
action information entering via the posterior cingulate cor-
tex, the reward value outcome information via the anterior 
cingulate cortex, and the resulting association directed from 
the midcingulate cortex to premotor cortical areas.

The cingulate cortex is of interest within this context, as 
a limbic structure that is involved in all three of these func-
tions, and this is related in this paper to the different connec-
tivity of the different parts of this proisocortical structure.
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