359 research outputs found

    Pathway Analyses Implicate Glial Cells in Schizophrenia

    Get PDF
    Background: The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge. Method Ten publically available gene sets (pathways) related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC) were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls), and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls). Results: The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance) and also achieved nominal levels of significance with INRICH (p = 0.0057) and ALIGATOR (p = 0.022). For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002). Conclusions: Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle). While not the primary purpose of our study, our results also highlight the consequential nature of alternative choices regarding pathway analysis, in that results varied somewhat across methods, despite application to identical datasets and pathways

    Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    Get PDF
    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia

    Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity

    Get PDF
    BackgroundThe cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms.MethodsWe conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive.ResultsReaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = −73.3, p = 0.0001, Cohen’s d = 1.62), after iTBS vs. cTBS (LS-mean difference = −137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = −64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons.ConclusionWe observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population.Clinical Trial Registrationclinicaltrials.gov, identifier NCT02642029

    Common Data Elements for National Institute of Mental Health–Funded Translational Early Psychosis Research

    Get PDF
    The National Institutes of Health has established the PhenX Toolkit as a web-based resource containing consensus measures freely available to the research community. The National Institute of Mental Health (NIMH) has introduced the Mental Health Research Core Collection as part of the PhenX Toolkit and recently convened the PhenX Early Psychosis Working Group to generate the PhenX Early Psychosis Specialty Collection. The Working Group consisted of two complementary panels for clinical and translational research. We review the process, deliberations, and products of the translational research panel. The Early Psychosis Specialty Collection rationale for measure selection as well as additional information and protocols for obtaining each measure are available on the PhenX website (https://www.phenxtoolkit.org). The NIMH strongly encourages investigators to use instruments from the PhenX Mental Health Research Collections in NIMH-funded studies and discourages use of alternative measures to collect similar data without justification. We also discuss some of the potential advances that can be achieved by collecting common data elements across large-scale longitudinal studies of early psychosis

    Investigation of Heschl's gyrus and planum temporale in patients with schizophrenia and bipolar disorder: A proton magnetic resonance spectroscopy study

    Get PDF
    Background: Superior temporal cortices include brain regions dedicated to auditory processing and several lines of evidence suggest structural and functional abnormalities in both schizophrenia and bipolar disorder within this brain region. However, possible glutamatergic dysfunction within this region has not been investigated in adult patients. Methods: Thirty patients with schizophrenia (38.67 ± 12.46. years of age), 28 euthymic patients with bipolar I disorder (35.32 ± 9.12. years of age), and 30 age-, gender- and education-matched healthy controls were enrolled. Proton magnetic resonance spectroscopy data were acquired using a 3.0. T Siemens MAGNETOM TIM Trio MR system and single voxel Point REsolved Spectroscopy Sequence (PRESS) in order to quantify brain metabolites within the left and right Heschl's gyrus and planum temporale of superior temporal cortices. Results: There were significant abnormalities in glutamate (Glu) (F(2,78) = 8.52, p < 0.0001), N-acetyl aspartate (tNAA) (F(2,81) = 5.73, p = 0.005), creatine (tCr) (F(2,83) = 5.91, p = 0.004) and inositol (Ins) (F(2,82) = 8.49, p < 0.0001) concentrations in the left superior temporal cortex. In general, metabolite levels were lower for bipolar disorder patients when compared to healthy participants. Moreover, patients with bipolar disorder exhibited significantly lower tCr and Ins concentrations when compared to schizophrenia patients. In addition, we have found significant correlations between the superior temporal cortex metabolites and clinical measures. Conclusion: As the left auditory cortices are associated with language and speech, left hemisphere specific abnormalities may have clinical significance. Our findings are suggestive of shared glutamatergic abnormalities in schizophrenia and bipolar disorder. © 2013 Elsevier B.V

    The cingulate cortex and limbic systems for emotion, action, and memory

    Get PDF
    Evidence is provided for a new conceptualization of the connectivity and functions of the cingulate cortex in emotion, action, and memory. The anterior cingulate cortex receives information from the orbitofrontal cortex about reward and non-reward outcomes. The posterior cingulate cortex receives spatial and action-related information from parietal cortical areas. It is argued that these inputs allow the cingulate cortex to perform action–outcome learning, with outputs from the midcingulate motor area to premotor areas. In addition, because the anterior cingulate cortex connects rewards to actions, it is involved in emotion; and because the posterior cingulate cortex has outputs to the hippocampal system, it is involved in memory. These apparently multiple different functions of the cingulate cortex are related to the place of this proisocortical limbic region in brain connectivity
    corecore