733 research outputs found

    Discovery of a redshifted X-ray emission line in the symbiotic neutron star binary 4U 1700+24

    Get PDF
    We present the spectral analysis of an XMM-Newton observation of the X-ray binary 4U 1700+24, performed during an outburst in August 2002. The EPIC-PN spectrum above 1 keV can be modeled by a blackbody plus Comptonization model, as in previous observations. At lower energies, however, we detect a prominent soft excess, which we model with a broad Gaussian centered at ~0.5 keV. In the high resolution RGS spectrum we detect a single emission line, centered at 19.19^{+0.05}_{-0.09} \AA. We discuss two possible interpretations for this line: O VIII at redshift z=0.012^{+0.002}_{-0.004} or Ne IX at redshift z~0.4.Comment: 5 pages, 2 figures, A&A accepte

    Saving a World Treasure: Protecting Florence from Flooding

    Get PDF
    The Committee Firenze 2016, on the occasion of the 50th anniversary of the tragic 1966 flood, invited six engineers and scientists to form an International Technical Scientific Committee (ITSC) to assess the current status of flood protection for the city of Florence and identify steps to reduce the risk of flooding facing the city. In this final Report, ITSC concludes that Florence remains at risk to significant flooding and this risk grows each day. It is not a question of whether a flood of the magnitude of 1966 or greater will occur, but when. In fact, the level of protection that exists in Florence now is not on a level appropriate to the citizens and treasures that rest within the city. If, under current conditions, a 1966-like flood occurred, the consequences to human lives, treasures, properties and community infrastructure could be much more catastrophic than they were in 1966

    Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    Get PDF
    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.Comment: Keywords: silicon detectors, avalanche multiplication, timing detectors, tracking detectors. 8 pages. 8 Figure

    Are Causality Violations Undesirable?

    Full text link
    Causality violations are typically seen as unrealistic and undesirable features of a physical model. The following points out three reasons why causality violations, which Bonnor and Steadman identified even in solutions to the Einstein equation referring to ordinary laboratory situations, are not necessarily undesirable. First, a space-time in which every causal curve can be extended into a closed causal curve is singularity free--a necessary property of a globally applicable physical theory. Second, a causality-violating space-time exhibits a nontrivial topology--no closed timelike curve (CTC) can be homotopic among CTCs to a point, or that point would not be causally well behaved--and nontrivial topology has been explored as a model of particles. Finally, if every causal curve in a given space-time passes through an event horizon, a property which can be called "causal censorship", then that space-time with event horizons excised would still be causally well behaved.Comment: Accepted in October 2008 by Foundations of Physics. Latex2e, 6 pages, no figures. Presented at a seminar at the Universidad Nacional Autonoma de Mexico. Version 2 was co-winner of the QMUL CTC Essay Priz

    XMM-Newton Finds That SAX J1750.8-2900 May Harbor the Hottest, Most Luminous Known Neutron Star

    Full text link
    We have performed the first sensitive X-ray observation of the low-mass X-ray binary SAX J1750.8-2900 in quiescence with XMM-Newton. The spectrum was fit to both a classical black body model, and a non-magnetized, pure hydrogen neutron star atmosphere model. A power law component was added to these models, but we found that it was not required by the fits. The distance to SAX J1750.8-2900 is known to be D = 6.79 kpc from a previous analysis of photospheric radius expansion bursts. This distance implies a bolometric luminosity (as given by the NS atmosphere model) of (1.05 +/- 0.12) x 10^34 (D/6.79 kpc)^2 erg s^-1, which is the highest known luminosity for a NS LMXB in quiescence. One simple explanation for this surprising result could be that the crust and core of the NS were not in thermal equilibrium during the observation. We argue that this was likely not the case, and that the core temperature of the NS in SAX J1750.8-2900 is unusually high

    Further X-ray observations of EXO 0748-676 in quiescence: evidence for a cooling neutron star crust

    Get PDF
    In late 2008, the quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 started a transition from outburst to quiescence, after it had been actively accreting for more than 24 years. In a previous work, we discussed Chandra and Swift observations obtained during the first five months after this transition. Here, we report on further X-ray observations of EXO 0748-676, extending the quiescent monitoring to 1.6 years. Chandra and XMM-Newton data reveal quiescent X-ray spectra composed of a soft, thermal component that is well-fitted by a neutron star atmosphere model. An additional hard powerlaw tail is detected that changes non-monotonically over time, contributing between 4 and 20 percent to the total unabsorbed 0.5-10 keV flux. The combined set of Chandra, XMM-Newton and Swift data reveals that the thermal bolometric luminosity fades from ~1E34 to 6E33 (D/7.4 kpc)^2 erg/s, whereas the inferred neutron star effective temperature decreases from ~124 to 109 eV. We interpret the observed decay as cooling of the neutron star crust and show that the fractional quiescent temperature change of EXO 0748-676 is markedly smaller than observed for three other neutron star X-ray binaries that underwent prolonged accretion outbursts.Comment: Moderate textual revisions according to referee report, accepted for publication in MNRA

    On the nature of the "radio quiet" black hole binaries

    Get PDF
    The accretion/ejection coupling in accreting black hole binaries has been described by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations were initially supposed to be universal. However, recently many sources have been found to produce jets that, given certain accretion-powered luminosities, are fainter than expected from the correlations. This shows that black holes with similar accretion flows can produce a broad range of outflows in power. Here we discuss whether typical parameters of the binary system, as well as the properties of the outburst, produce any effect on the energy output in the jet. We also define a jet-toy model in which the bulk Lorentz factor becomes larger than ~1 above ~0.1% of the Eddington luminosity. We finally compare the "radio quiet" black holes with the neutron stars.Comment: in the Proceedings of IAU Symposium 275, "Jets at all Scales", Buenos Aires, Argentina, 13-17 September 2010, eds. G.E. Romero, R.A. Sunyaev and T. Bellon

    What determines growth potential and juvenile quality of farmed fish species?

    Get PDF
    Enhanced production of high quality and healthy fry is a key target for a successful and competitive expansion of the aquaculture industry. Although large quantities of fish larvae are produced, survival rates are often low or highly variable and growth potential is in most cases not fully exploited, indicating significant gaps in our knowledge concerning optimal nutritional and culture conditions. Understanding the mechanisms that control early development and muscle growth are critical for the identification of time windows in development that introduce growth variation, and improve the viability and quality of juveniles. This literature review of the current state of knowledge aims to provide a framework for a better understanding of fish skeletal muscle ontogeny, and its impact on larval and juvenile quality as broadly defined. It focuses on fundamental biological knowledge relevant to larval phenotype and quality and, in particular, on the factors affecting the development of skeletal muscle. It also discusses the available methodologies to assess growth and larvae/juvenile quality, identifies gaps in knowledge and suggests future research directions. The focus is primarily on the major farmed non-salmonid fish species in Europe that include gilthead sea bream, European sea bass, turbot, Atlantic cod, Senegalese sole and Atlantic halibut
    corecore