97 research outputs found

    Analysis Tools and Compensation Methods for the Control of Ma-chines with Friction

    Get PDF
    Physically it is always possible to construct a system so that a 2 is negative, (by making (r/a) sufficiently large, for example). The difficulty arises because the Coulomb friction law is not always compatible with the equations of rigid-body dynamics. Everything will be resolved if either the beatings or the rotating body are made elastic. When no rigid-body solution exists, the shaft seizes up, and no motion occurs. We note that the phenomenon does not occur in the case of a balanced rotor as it results in F = 0. It may be shown that the paradox also occurs when the c.g. is off the axis of rotation

    A review of squeaking in ceramic total hip prostheses

    Get PDF
    The occurrence of audible squeaking in some patients with ceramic-on-ceramic (CoC) hip prostheses is a cause for concern. Considering multifactor contributing to this phenomenon, many studies have been conducted over the last decade. Great efforts have been put on understanding the mechanics of the hip squeaking to gain a deep insight into factors resulting in sound emission from hip articulation. Disruption of fluid-film lubrication and friction were reported as main potential causes of hip squeaking, while patient and surgical factors as well as design and material of hip implants were identified as affecting factors. This review article therefore summarised the recent available literature on this subject to provide a platform for future developments. Moreover, high wear rates and ceramic liner fracture as viable consequences of hip squeaking were discussed.The first author gratefully acknowledges Macquarie University for International Macquarie University Research Excellence Scholarship (iMQRES)-No. 2010017. The second author would like to thank to the Portuguese Foundation for Science and Technology through the project UID/EEA/04436/2013

    A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints

    Get PDF
    "Available online 19 December 2017"A comprehensive survey of the literature of the most relevant analytical, numerical, and experimental approaches for the kinematic and dynamic analyses of multibody mechanical systems with clearance joints is presented in this review. Both dry and lubricated clearance joints are addressed here, and an effort is made to include a large number of research works in this particular field, which have been published since the 1960′s. First, the most frequently utilized methods for modeling planar and spatial multibody mechanical systems with clearance joints are analyzed, and compared. Other important phenomena commonly associated with clearance joint models, such as wear, non-smooth behavior, optimization and control, chaos, and uncertainty and links’ flexibility, are then discussed. The main assumptions procedures and conclusions for the different methodologies are also examined and compared. Finally, future developments and new applications of clearance joint modeling and analysis are highlighted.This research was supported in part by the China 111 Project (B16003) and the National Natural Science Foundation of China under Grants 11290151, 11472042 and 11221202. The work was also supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Initial State Iterative Learning For Final State Control In Motion Systems

    No full text
    corecore