28 research outputs found

    A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints

    Get PDF
    "Available online 19 December 2017"A comprehensive survey of the literature of the most relevant analytical, numerical, and experimental approaches for the kinematic and dynamic analyses of multibody mechanical systems with clearance joints is presented in this review. Both dry and lubricated clearance joints are addressed here, and an effort is made to include a large number of research works in this particular field, which have been published since the 1960′s. First, the most frequently utilized methods for modeling planar and spatial multibody mechanical systems with clearance joints are analyzed, and compared. Other important phenomena commonly associated with clearance joint models, such as wear, non-smooth behavior, optimization and control, chaos, and uncertainty and links’ flexibility, are then discussed. The main assumptions procedures and conclusions for the different methodologies are also examined and compared. Finally, future developments and new applications of clearance joint modeling and analysis are highlighted.This research was supported in part by the China 111 Project (B16003) and the National Natural Science Foundation of China under Grants 11290151, 11472042 and 11221202. The work was also supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Stress distribution and strength condition of two rolling cylinders pressed together

    Get PDF
    Cover title.Prepared as part of an investigation conducted by the Engineering Experiment Station, University of Illinois at Urbana-Champaign

    Bending stresses in the bolts of a bolted assembly

    No full text
    corecore