
BRIEF NOTES 

Physically it is always possible to construct a system so that 
a 2 is negative, (by making (r /a)  sufficiently large, for exam- 
ple). The difficulty arises because the Coulomb friction law is 
not always compatible with the equations of rigid-body dynam- 
ics. 

Everything will be resolved if either the beatings or the rotat- 
ing body are made elastic. When no rigid-body solution exists, 
the shaft seizes up, and no motion occurs. We note that the 
phenomenon does not occur in the case of a balanced rotor as 
it results in F = 0. It may be shown that the paradox also occurs 
when the c.g. is off the axis of rotation. 
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Saddle-Point Principles for General 
Nonlinear Material Continua 

A. C ar i n i  11 

1 Introduction 
A lot of techniques have been proposed for the theoretical and 

numerical treatment of inelastic (linear or nonlinear) boundary 
value problems, in particular for the elastic-plastic one. Some 
of these techniques rest on Colonnetti's idea (Colonnetti, 1918, 
1950, 1955) of considering the material nonlinearities as im- 
posed distortions in a supposedly linear elastic continuum. Co- 
lonnetti's approach to inelastic problems had numerous devel- 
opments and applications in literature, particularly in elastoplas- 
ticity, by, among others, Ceradini (1966), Maier (1969), De 
Donato and Maier (1972), and Carter and Martin (1977). See 
also Koiter (1964) for some historical remarks on this topic. 

Colonnetti's approach exploits the typical additive decompo- 
sition of the constitutive equations of many inelastic problems, 
into elastic and inelastic parts and, somehow, it is a precursor 
of the more recent operator split approach which is used in 
many fields, for instance in plasticity (Ortiz et al., 1983), in 
shakedown analysis (Zarka and Casier, 1979), and in micro- 
mechanics (Mura, 1987). 

In previous works (Carini, 1996; Carini and De Donato, 
1997) several minimum principles for the continuum problem 
with general nonlinear materials were shown. These principles 
rest on Colonnetti's idea and are based on the use of the solution 
of an elastic auxiliary problem, i.e., of the same problem in the 
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elastic range with homogeneous boundary conditions in the 
presence of suitable distorsions. 

The main characterizations of these minimum principles are 
(i)  the energy meaning of the related functionals; (ii) their 
ability to specialize into well-known classical principles in case 
of linear elasticity and incremental elastoplasticity; (iii) their 
validity in all cases even in the lack of existence or uniqueness 
of the solution. 

However, from a practical point of view, the main drawback 
which arises in the use of the above-mentioned functionals lies 
in the need to find the solution of the elastic auxiliary problem 
as already pointed out in Carini et al. (1995). 

In this paper the above drawback is overcomed by the re- 
formulation of the minimum principles as saddle-point princi- 
ples. 

After a brief preliminary description (in Section 2) of the 
continuum problem and a recall of the above-mentioned mini- 
mum principles, in Section 3 they are transformed reducing all 
terms of the functionals relevant to the auxiliary elastic problem 
to one term only. This allows us to recognize, in this term, the 
deformation energy of the elastic auxiliary problem and then to 
use classical extremum principles of elasticity for its evaluation. 
In this way, two new general rain-max variational principles for 
the original problem are derived and later, in Section 4, an 
application is presented with reference to elastic-plastic material 
behavior. 

2 Problem Formulation and Previous Variational 
Principles 

A solid is considered to occupy a region ~2 with a smooth 
external surface F in a triaxial orthogonal Cartesian reference 
system. F ,  and Fp are the parts of surface F where displacements 
and surface tractions are imposed, respectively, while x = (xl, 
x2, x3) denotes the position vector of a material point in ~2. 

The external actions on the solid, i.e., the volume forces 
F~(x; t) on f~, the imposed displacements v~(x; t) on F,  and 
the tractions p~ (x; t) on F~,, are given for any instant to -< t -< 
tl of a known time interval T = [ to, tl ], through known time 
functions. We assume small strains and displacements, thus we 
consider the usual linear equilibrium and compatibility equa- 
tions. Let's assume that the constitutive law is of the additive 
type, that is, the sum of two behaviors, the first one linear elastic 
and the second one inelastic, conceived as a deviation with 
respect to the linear elastic part. 

The general inelastic problem is then here described by the 
following equations and it will be referred to as problem P: 

Problem P: 

cr~j,j + /7,. = 0 in f~ × T (2.1) 

~7onj =Pi on Fp × T (2.2) 
l c o = ~ ( u i j +  uj, i) in f~ × T (2.3) 

ui = v~ on F , , ×  T (2.4) 

~u(x; t) = Dijhk(x; t)ch~(x; t) + ~V~(~(X; t)) (2.5) 

e0(x; t) = BUhk(X; t)crhk(X; t) + ~Tj(tr(x; t)) (2.6) 

ui = e  0 =  a 0 = 0  on ~ × (-0% to) (2.7) 

where ~ = f~ U F. Relations (2.1) and (2.2) represent the 
indefinite and boundary equilibrium equations, respectively, 
while relations (2.3) and (2.4) represent the indefinite and 
boundary compatibility equations, respectively. Here, ~r,~, e0, 
and ul are the components of the stress tensor tr, the strain 
tensor E, and the displacement vector u, respectively. Relations 
(2.5) and (2.6) represent the constitutive law in direct and 
invers form, respectively, where DUhk = B~k is the time-depen- 
dent elastic moduli tensor with the usual simmetry and positive 
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definiteness properties at any time t, while ',Iq) and q~ represent 
the " remaining"  inelastic part operator of the constitutive law. 
Relations (2.7) represent the initial conditions, which are as- 
sumed as being homogeneous, for simplicity. 

A stress distribution field * a0 (x, t) is defined as statically 
admissible when it satisfies the following equilibrium equations: 

~r0, ~ +  Fi = 0 in f t ×  T (2.8) 

. 
cron ~ =p~ on Pp × T (2.9) 

while a stress distribution * * a 0 (x, t) is defined as self-equili- 
brated when it satisfies the following homogeneous equilibrium 
equations: 

• * = 0 in ~2 x T (2.10) O'0 ,  j 

~r 0 n~ = 0, on F,  × T. (2.11) 

Analogously a strain field e°(x,  t) is defined as kinematically 
admissible if it can be derived by means of the equation 

EiOj~ I 0 ~(ui~ + u:°.i) in f~ × T (2.12) 

from a displacement field uP(x, t) satisfying the boundary con- 
ditions 

ui ° = vi on F,, × T (2.13) 

while a strain field e~°(x, t) is here defined as self-compatible 
if it can be derived by means of the equation 

e9 9 1 .  O0 O0 ~/ = ~7tu, d + uj j )  in ~ × T (2.14) 

from a displacement field u~°°(x, t) vanishing on F, ,  i.e., that 
satisfies the homogeneous boundary conditions 

u/°°= 0 on F , , ×  T. (2.15) 

In the following the symbols e~( and ~f er 0 represent, respectively, 
the strains and the stresses in the solid under the external actions 
Fi,  Pi, vi and under the hypothesis of a linear elastic behavior 
with material properties corresponding to Bobs. 

In a previous paper (Carini, 1996) two minimum principles 
were shown. In particular the following two propositions were 
proved: 

Proposition 1: A statically admissible stress field a~ is a 
(or the) solution o f  problem P i f  and only i f  both the following 
conditions are satisfied." 

(i)  It minimizes (absolute minimum) the functional F*ce, 
where 

F ~ [ a  o ] = ~ a O Boh~ahkd~2 -- v inj f f*dF 
U. 

ff~ n , * ef + ~ij(o" ) (ao - Oo )d~2 

+ ½ f ~(~*)Bo,,:,,,(~*)d~}dt. (2.16) 

(ii) The minimum is equal to F,°,., where 

F~  = ~ ~o eo aaa - vinja O dF (2.17) 
2 ,, 

Proposition 2: A kinematically admissible displacement 
field u~ is a (or the) solution of  problem P i f  and only i f  both 
the following conditions are satiafied: 

(i) It minimizes (absolute minimum) the functional f tpe, 
where 

, o  £{ foo  f F,p~[ui] = ~ eoDo~,:hkd~ - Fiu~°d~ 

f r  I ~ n 0 0 ef - piu~dF + qJo(e ) (% - e o )d~2 

q" ½~  {q('°)Dijhk£],k('°)d~}dl. (2.18) 

o (ii) The minimum is equal to F,p~, where 

fr{' f el ~S--'- faFiu'edf~- f,P'u'dF)dt" F~,e = g cr o e q a l l  ~J" 

(2.19) 

It is worth noting that, in the functional (2.18), e ° = 
~ ( u  o) = I o u o ~(uij + j,i). In (2,16) cr o is the solution of the 
following imposed 

Problem pd: 

strain elastic auxiliary problem pd : 

a ~ . =  0 in f~ × T (2.20) tj,J 

a = 0  on F p × T  (2.21) o'ijn j 
I / d d = ~tui j  + ui, i) in ~ × T (2.22) 

u} ~= 0 on F,  × T (2.23) 

d d ~ij -~ BohkO'hk + do, (2.24) 

where d 0 is interpreted as the imposed distorsions given by d U 
= - ~ ) ( o ' * )  being o-* any statically admissible stress field. 

Conversely in (2.18) e~ is the solution of the following im- 
posed stress elastic auxiliary problem ps: 

Problem P": 

abo = 0 in ~ X T (2.25) 

'~ = 0 on F e × T (2.26) o'qn j 

7(uTj + uj, i) in ~ × T (2.27) £ ~  _~ I ~, s 

U : = 0  on F,  × T (2.28) 

ab = Do hket"ik + S o, (2,29) 

where s 0 is interpreted as the imposed stresses given by s 0 = 
-',I,g.(~ °) being t ° any kinematically admissible strain field. It 
is worth noting that both propositions 1 and 2 have been proved 
assuming BOh~ and D0hk as time independent; however, it is 
easy to verify their validity also when B0hk and D0h~ are time 
dependent. 

3 N e w  V a r i a t i o n a l  P r i n c i p l e s  

A main computational drawback of the above principles 
(proposition 1 and 2) lies in the need to evaluate the last term 
of (2.16) and (2.18 ) through the solution of the elastic auxiliary 
problem for every admissible stress field ~*  (for proposition 
1) or for every compatible strain field t ° (for proposition 2) 
or, in other words, in the need to find Green functions of the 
elastic problem. However, the last two mentioned terms are 
representative of elastic energies which can be evaluated, using 
classical elasticity principles, by maximization of suitable func- 
tionals in additional new variables. 

3.1 A Min-Max Extended Complementary Energy Prin- 
ciple. Following this path of reasoning and making reference 
to proposition 1 it is possible to find functional F~e to be max- 
imized, in order to obtain the last term of (2.16), simply by 
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using the principle of virtual work as follows (at any instant 
t): 

f f~  n * d + ~v( t r  )aod~.  (3.1) 

It is easy to recognize the right-end side of ( 3.1 ) as the (changed 
in sign) complementary energy value at the solution of the 
elastic problem (at instant t) with imposed distorsions d~ = 
- ~ ( t r * ) .  This means that, by virtue of the minimum pnnciple 
of complementary energy, we can write 

~(O'*)Boh,cr~k(~*)d~2 max ~ -  . . . .  ,~ , cro]} (3.2) 1 = i ~ ,  d i- rr d ,  , , 
O~ 

where 

= --  frO' BO'hktThk *d~  

a}* * being any self-equilibrated stress field. Then, by substitu- 
tion of Eq. (3.2), the functional (2.16) is transformed into the 
following new functional: 

= 0"O. Bo.hkO'hkd~) --  v ~ n j a  o. d F  
u 

and the following statement can be asserted: 

* and Proposition 3: A statically admissible stress field c~o 
a self-equilibrated stress field ~r}~* * are a (or the) solution of 
problem P and problem pd, respectively, if and only if both the 
following conditions are satisfied: 

( i ) They make stationary (minimum respect to cr ~ and max- 
imum respect to a} * *) the functional (3.4); 

(ii) The saddle-point value of the functionnal (3.4) is equal 
to F~°~ Eq. (2.17). 

It is worth noting that whereas on the one hand the new 
functional does not require the preliminar solution of the elastic 
auxiliary problem or the evaluation of the stress Green function 
due to distorsions, on the other hand the new formulation is 
larger in terms of the number (double) of unknown fields re- 
quired to solve the problem. 

3.2 A Min-Max Extended Total Potential Energy Princi- 
ple. In an analogous way it is possible to derive, from proposi- 
tion 2, a new min-max principle through the determination of 
functional F~'~,, to be maximized in order to obtain the last term 
of (2.18). This may be made simply by using the principle of 
virtual work as follows (at any instant t): 

I f~  e~( l~O)Do.hk£~k( l~O)d~  

1 f £~(l~O)Do.hkE)~k(l~O)d~-~ _p. f f l  n 0 s = - ~ ~u(~ )eodfL (3.5) 

It is easy to recognize the right-end side of (3.5) as the (changed 

in sign) total potential energy value at the solution of the elastic 
problem (at instant t) with imposed stresses so. = _ ~ ( ~ o ) .  
This means that, by virtue of the minimum principle of total 
potential energy, we can write 

1 f s 0 s 0 s s00 Eij(t~ )Dijhkf. hk(¢i )df~ = max {F,p~[ui , u°]} (3.6) ,h ul 

where 

tpe[Ui , --  ~ Eij LIo.hk~hk I.,ta~ 

e~0o being any self-compatible strain field (that is any strain 
field which can be derived from a displacement field u~ .°° satis- 
fying the homogeneous boundary conditions u~ °° = 0 on F,) .  
Then, by substitution of Eq. (3.6), the functional (2.18) can 
be transformed into the following new functional: 

f {,foo o fo ~tp~[u °, u~ °°] = ~ ~qDo.h,ehkdf2 -- Fiu°df2 

- fr,. P'u '°dF+ fa  ~ ( e ° ) ( e ~ -  e~i)df~ 

- ~ e 0 vm,kehk , ~  + ~(~°)e}°°d~2 dt (3.8) 

and the following statement can be asserted: 

Proposition 4: A kinematically admissible displacement 
field u~ and a displacement field u~ .°° vanishing on F,, are a (or 
the) solution of problem P and problem W, respectively, if and 
only if both the following conditions are satisfied: 

(i) they make stationary (minimum respect to u ~ ° and maxi- 
mum respect to u~ °°) the functional (3.8); 

(ii) The saddle-point value of the functional (3.8) is equal 
to F~,e Eq. (2.19). 

It is worth noting that, in the functional (3,8), e ° = e°(u °) 
I 0 1 ~ sO0 s00 = ~(u~j + uj°.i) and that e~j °° = eo.~°°'tuS°°') = ~tu~ a + uj.~ ). 

In this case too, the same remark pointed out at the end of 
proposition 3 applies with reference to the fact that whereas, on 
the one hand, the new functional does not require the preliminar 
solution of the elastic auxiliary problem or the evaluation of 
the strain Green function due to imposed stresses, on the other 
hand, the new formulation is larger in terms of the number 
(double) of unknown fields required to solve the problem. 

Remarks. In order to make a comparison with existing 
variational principles for the nonlinear continuum problem, let's 
summarize the main properties of the above two min-max prin- 
ciples: 

(a) Each functional has a physical meaning amenable to an 
energy (which is useful for its construction). 

(b) All the variables involved have a physical meaning 
(stress, strain, etc.). 

(c) The specialization of the constitutive law (2.5) or (2.6) 
to the elastic case ( ~  = ~ = 0) leads the functionals to the 
classical ones of the theory of elasticity. 

When a comparison of the above properties is made with 
those of other existing variational principles for the nonlinear 
continuum problem, it so happens that some or all of the above- 
mentioned properties (a) to (c) do not apply or, rather, some 
drawbacks arise. In particular the following can be said. 

1012 / Vol. 64, DECEMBER 1997 Transactions of the ASME 

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



BRIEF NOTES 

1 With reference to the variational formulations derived 
using the linear or nonlinear method of adding the adjoint opera- 
tor (see Morse and Feshbach, 1953), the following drawbacks 
occur: (a) the additional variables required by the method usu- 
ally have no physical meaning; (b) in the case of the linear 
constitutive law the nonlinear (quadratic) part of the functional 
is not defined in sign, which means that the solution corresponds 
to a non-oriented saddle-point of the functional, that is, the 
solution does not correspond to the minimum of the functional 
with respect to a subset of the variables nor does it correspond 
to the maximum with respect to the remaining variables. 

2 With reference to the variational formulations derived 
using the least square method, the following drawbacks occur: 
(a) the functionals lack physical meaning, (b) the functionals 
lead (when a discretized solution procedure is adopted) to equa- 
tion systems with worse (i.e., larger) values of the conditioning 
index than those of the corresponding discretized equation sys- 
tems derived from the above saddle-point principles (proposi- 
tion 3 and 4) (see Carini et al., 1995); in fact, the present 
formulation (propositions 3 and 4) could be regarded as a pre-  
condit ioned least-square formulation, interpreting the inverse of 
the elastic operator as a precondit ioning operator (see Carini et 
al., 1995). 

3 When using Tonti's general method for the variational 
formulation of any nonlinear problem (see Tonti, 1984) the 
above properties (a) ,  (b),  (c) cannot in general be guaranteed 
while, on the contrary, they are satisfied by the functionals of 
propositions 3 and 4. This derived by the use (see Carini and 
De Donato, 1997), as integrating operator, of the inverse of the 
linear elastic operator in deriving propositions 1 and 2 (from 
which proposition 3 and 4 are obtained). This emphasizes the 
peculiar role of the choice of a particular integrating operator in 
deriving, from Tonti's general method, variational formulations 
satisfying properties (a) ,  (b),  and (c) .  

4 For time-dependent problems and with reference to varia- 
tional formulations which use convolutive bilinear forms (see, 
for instance, Gurtin, 1964; Tonti, 1973; Rafalski, 1969a, 1969b; 
Reiss and Haug, 1978), the following can be pointed out: (a) 
these variational formulations are valid only for linear problems 
with constant physical properties; (b) in contrast to these formu- 
lations, the present one applies to generally nonlinear time de- 
pendent problems; (c) the original formulation by Gurtin and 
Tonti is not an extremal formulation. In fact the solution corre- 
sponds to a non-oriented saddle-point of the functional. The 
subsequent formulation by Rafalski (1969a, b) and Reiss and 
Haug (1978), need integrations over unbounded intervals. 

5 Finally, it is worth noting that, for the elastic-plastic prob- 
lem formulated in terms of variational formulations based on 
nonlinear programming techniques (see, for instance, Comi et 
al., 1991; Romano et al., 1993), the existence of a potential 
(generally nonsmooth) is always required. In the author's opin- 
ion it is possible to overcome this drawback using the present 
formulation, as partially showed in Carini (1996) and in the 
following Section 4. 

4 An Application to Incremental Elastoplasticity 

As an application of the total potential energy principle (prop- 
osition 4) to elastoplasticity, in the following we consider the 
elastoplastic continuum problem in the presence of an incremen- 
tal constitutive law with hardening and/or softening and non 
associated flow rule. The set of relations describing the above 
behavior is the following: 

~r~ = D/~h~ ~ (4.1) 

~q = ~ + ~. (4.2) 

~ _ 0~(a~, ap) ~ (4.3) 
0a~ 

ap = lp(a~, ap)~. (4.4) 

4' = 4'(c~ o, a ; )  _< 0 (4.5) 

= 0 in f~,(i.e., if 4' < 0) (4.6) 

6 - < 0 ,  k - > 0 ,  6 k = 0  in f~p(i.e., if 4' = 0) (4.7) 

where Eq. (4.1) establishes the relation between the incremental 
stress a0 and the elastic incremental strains L~; Eq. (4.2) states 
the additivity of the elastic and plastic strains; Eqs. (4.3) and 
(4.4) state the evolution of the inelastic kinematic variables 
~ and &p as a function of the plastic multipliers ~ and of the 
plastic potential ~ being lp a given nonlinear function of cr 0 and 
a ; .  Equation (4.5) defines the elastic domain while the set of 
Eqs. ( 4 . 6 ) -  (4.7) expresses the loading-unloading criterion. In 
a more compact form, all the Eqs. ( 4 . 1 ) -  (4.7) may be written 
as follows: 

dro = / ) i ~  (4.8) 

where 

19ahk = D~hk -- 

while 

Oijmn O ~  0_~ Opqh k 
Oam, Ocrpq 

0~) D . . . . .  O ~  -- 0~0 l p 

Oamn Oar. ' Oap  

if 4 ' = O  and 6 = 0  (4.9) 

/ • j h k  = D@k, 

if 4 ' < 0  or 4 ' = 0  and 6 < 0  (4.10) 

being/Sijhk m /)hkU as a consequence of the non-associated char- 
acter of the constitutive law. 

In order to write Eq. (4.8) in the split form (2.5), the follow- 
ing position can be adopted: 

Dijhk = DUnk -- cD~hk (4.11) 

with 

DTjhk 4: D~kij (4.12) 

C = 1 if 4 ' = 0  and 6 = 0  
(4.13) 

c = 0  if 4 ' < 0  or 4 ' = 0  and 6 < 0  

leading finally to the following expression of the inelastic part 
of the constitutive law: 

tIl~j( dhk ) = --  c D~hkEhk, (4.14) 

The application of the extended total potential energy principle 
(proposition 4) to the above elastic-plastic behavior finally leads 
to the following extended functional: 

foo0 L 17~p~[u~, a~ °°] = g %Doh~ehkdf~ -- F~a~df~ 

--  --  CeijOijhk(ehk -- Uh~)df~ 

- -  g £ii Dijhkehk df~ - C e i j D @ k E h k  d f L  (4.15) 
p 

An analogous functional was stated by Telega (1980), using 
the nonlinear method o f  adding the adjoint  operator. However, 
it is worth noting that while both the present and Telega's 
approaches have the doubling of the unknown variables in com- 
mon, the main differences between the two approaches may be 
summarized in the following two points: 

(a) In the present approach the solution corresponds to the 
min-max of the functional (4.15 ) while with Telega' s approach, 
the solution corresponds only to the stationarity of its analogous 
functional. 
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(b) As already said, in the present approach all variables 
of the functional (4.15) have a physical meaning; this is not 
true for all the variables of Telega's functional (in particular 
for the variables of the adjoint operator). 
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Impact Coefficients and Tangential 
Impacts 
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Introduction 
The last decade has seen a flurry of papers on the topic of 

rigid-body impact theory. Despite the apparent simplicity of the 
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topic, some challenging problems exist and there have been 
some interesting and, at times, controversial developments. For 
example, some dispute has arisen on how best to define and 
use coefficients, particularly coefficients associated with the 
process of restitution normal to the contact surface in the pres- 
ence of Coulomb friction. At least five coefficients, e, have 
been proposed and discussed, one is a kinematic coefficient 
(defined as the ratio of normal velocity components) attributed 
to Newton. Another is a kinetic coefficient (ratio of normal 
contact impulses) attributed to Poisson. A third is an energetic 
coefficient (ratio of work done by normal contact impulses) 
defined by Stronge (1990). A fourth coefficient is by Ivanov 
(1992), (defined as a ratio of kinetic energy losses). Batlle and 
Cordona (1997) analyze three-dimensional tangential impacts 
and define another suitable for that problem. Coefficients associ- 
ated with directions other than normal and processes other than 
compression have been defined and used (see Brach, 1991 ), but 
most of the controversy, so far, is with the normal coefficients. 

Newton's coefficient has been used for collinear impacts and 
frictionless oblique impacts for nearly 300 years. Its use has 
been generalized and extended to three-dimensional collisions 
by Brach (1991, 1997). This approach has been extended to 
pseudo-rigid bodies by Cohen and Mac Sithigh (1996). 
Whereas the coefficient has an upper bound of unity for certain 
special conditions, it is now recognized that this is not true in 
general since a value of 1 sometimes can lead to a solution that 
violates energy conservation. Poisson's coefficient has likewise 
been known for many years; some, such as Wang and Mason 
(1992), claim that its use guarantees energy conservation but 
Newton's law does not. Poisson's coefficient also is bounded 
by 0 and 1 only for certain types of collisions and body orienta- 
tions. The lack of unit bounds has prompted questions of "ener- 
getic consistency." In discussing the process of normal defor- 
nlation, Stronge says that in a consistent theory the part of the 
energy dissipation during restitution cannot be larger than the 
corresponding part during compression. He then defines a coef- 
ficient using a work constraint such that W ~ -< e2W;l, where 
each W,, is the work done by the normal impulse during rebound 
and approach, respectively. Stronge also demands an energeti- 
cally consistent (normal) coefficient of restitution to be one 
that is independent of the tangential contact process (friction). 
It remains to be determined under what conditions Stronge's 
coefficient has a unit upper bound. 

Another question is sometimes raised concerning a depen- 
dence of coefficients on initial conditions. Some hold the notion 
that "impact coefficients" should be similar to material con- 
stants and should not depend on initial conditions. In the case 
of impact coefficients, dependence on initial conditions is not 
a drawback but a necessity. Newton's and other coefficients are 
quantities that represent nonlinear dynamic material behavior. 
If impact coefficients did not depend on initial conditions, they 
would have no utility. A requirement that impact coefficients 
be independent of each other is a lofty but impractical goal. 
When complicated, nonlinear three-dimensional contact pro- 
cesses are considered in the presence of inertial coupling, arbi- 
trary initial conditions and perhaps nonpoint contact, the expec- 
tation of coefficient independence is unrealistic. 

Newton's coefficient is said to lack energetical consistency; 
but other deficiencies are also claimed. The existence of a tan- 
gential impact, or Impact Without Collision (IW/OC),  associ- 
ated with Painlevd's Paradox (see Brogliato, 1996) has been 
given attention recently. Wang and Mason (1992) and Batlle 
(1993) use a tangential impact as an example of where the use 
of Newton's coefficient not only is said to be energetically 
inconsistent but is impossible to apply. The basis of this claim 
appears not to be that tangential impacts do not require normal 
deformation but rather that the definition of e = -V,.,Jvcn is 
undefined for vc,, = 0. It is the purpose of this paper to address 
these issues and to determine whether or not the use of Newton' s 
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