48 research outputs found

    Südamerakkude sünnijärgse arengu bioenergeetilised aspektid: struktuuri ja funktsiooni vaheliste seoste väljakujunemine

    Get PDF
    Taust ja eesmärk. Täiskasvanud südamerakkude bioenergeetikas on valdavaks ATP genereerimisemehhanismiks mitokondriaalne oksüdatiivne fosforüülimine, mis katab tavatingimustel üle 90% südame energeetilisest vajadusest. Mitokondrid paiknevad kardiomüotsüütides korrapäraselt müofibrillide vahel, asetudes kohakuti libisevate filamentide kontaktalaga (sarkomeeri anisotroopne (A) vööt). Aktomüosiinisüsteem, mitokondrid, sarkoplasmaatiline võrgustik ja nendega seotud tsütoskeleti valgud moodustavad rakus ühtse struktuurse ja funktsionaalse terviku, nn energeetilise üksuse (EÜ), mis reguleerib efektiivselt energia tootmist ja fosforüülrühma ülekannet. Vahetult pärast sündi on mitokondrite paigutus ebakorrapärane, täiskasvanud kardiomüotsüüdiga võrreldes on oluliselt erinev ka südamerakkude metabolism ning energiaülekande regulatsioon. Töö eesmärgiks oli uurida südame mitokondriaalse hingamise regulatsiooni mehhanismide väljakujunemist südame sünnijargses arengus ning selle seotust mitokondrite ja tubuliini isovormide rakusisese paigutusega. Töö tulemused võimaldavad selgitada südamerakkude teatud patoloogiliste seisundite etioloogiat. Metoodika. Kardiomüotsüüdid isoleeriti, perfuseerides katseloomade (Wistari liini rotid) südant kollagenaas A lahusega. Skineeritud kiudude eraldamiseks kasutati meetodit, mille käigus lihaskiud eraldatakse õrnalt pintsettidega ja töödeldakse seejärel saponiiniga. Permeabiliseeritud kardiomüotsüütide ja skineeritud kiudude hapnikutarbimine registreeriti suure lahutusvõimega oksügraafil. Preparaatide visualiseerimiseks kasutati konfokaalmikroskoope Zeiss LSM 510 ja Olympus FluoView FV10i-W. Tulemused. Katseloomade sünni järel toimuvad esimese pooleteise kuu jooksul südamerakuenergiaülekande regulatsioonis kiired muutused: mitokondrite paigutus muutub korrapäraseks, toimub tsütoskeleti funktsionaalselt oluliste komponentide paigutumine mitokondrite lähedusse ja sellega samal ajal kasvavad oluliselt difusioonitakistused adenosiindifosfaadile (Km(ADP) väärtus suureneb 75,0 ・} 4,5 μM 3 päeva vanuste rottide kardiomüotsüütides kuni 317 ・} 29,5 μM vorreldes 84päevaste katseloomadega) ning käivitub kreatiinkinaasi-fosfokreatiini ülekandevõrgustik mitokondrite ja tsütosoolsete ATPaaside vahel. Järeldused. Katseloomade sünnijargse arengu käigus toimuvad dünaamilised muutusedkardiomüotsüütide struktuuris, millega kaasnevad muutused nende funktsioonis. Funktsionaalsete vastasmõjude tekkimine mitokondrite ja tsütoskeleti komponentide vahel on eelduseks täiskasvanud südamerakule omase energiametabolismi väljakujunemiseks. Eesti Arst 2013; 92(7):372–38

    Südamelihase rakkude struktuuri olulisus rakuhingamise regulatsioonis

    Get PDF
    Viimastel aastatel on järjest selgemaks saanud seos raku energeetilise ainevahetuse ja südamehaiguste vahel, mistõttu on oluline uurida seda mõjutavaid tegureid. Töös uuriti südamelihase rakkude mitokondriaalse hingamise regulatsiooni väga erineva rakustruktuuriga preparaatides: 1) permeabiliseeritud kardiomüotsüütides, kus mitokondrid on regulaarselt organiseeritud; 2) südamelihase fenotüübiga sarnastes kontraheeruvates HL-1 (B HL-1) rakkudes ja 3) HL-1 mittekontraheeruvates (NB HL-1) rakkudes. Nende preparaatide vahel esines suur erinevus mitokondriaalse hingamise regulatsioonis. Selline tulemus näitab raku struktuuri ja funktsiooni vaheliste seoste tähtsust südamelihase rakkudes ning võimaldab paremini mõista protsesse nii terves kui ka patoloogilises südamelihases. Eesti Arst 2008; 87(1):19−2

    Methods for Assessing Mitochondrial Function in Diabetes

    Get PDF
    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes

    Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble - Applications for Bioenergetic Research

    Get PDF
    We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed

    Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    Get PDF
    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells

    Mitochondria and Energetic Depression in Cell Pathophysiology

    Get PDF
    Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell’s ability to do work and control the intracellular Ca2+ homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis

    Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart

    Get PDF
    AbstractAdult cardiomyocytes have highly organized intracellular structure and energy metabolism whose formation during postnatal development is still largely unclear. Our previous results together with the data from the literature suggest that cytoskeletal proteins, particularly βII-tubulin, are involved in the formation of complexes between mitochondria and energy consumption sites. The aim of this study was to examine the arrangement of intracellular architecture parallel to the alterations in regulation of mitochondrial respiration in rat cardiomyocytes during postnatal development, from 1day to 6months.Respirometric measurements were performed to study the developmental alterations of mitochondrial function. Changes in the mitochondrial arrangement and cytoarchitecture of βII- and αIV-tubulin were examined by confocal microscopy.Our results show that functional maturation of oxidative phosphorylation in mitochondria is completed much earlier than efficient feedback regulation is established between mitochondria and ATPases via creatine kinase system. These changes are accompanied by significant remodeling of regular intermyofibrillar mitochondrial arrays aligned along the bundles of βII-tubulin. Additionally, we demonstrate that formation of regular arrangement of mitochondria is not sufficient per se to provide adult-like efficiency in metabolic feed-back regulation, but organized tubulin networks and reduction in mitochondrial outer membrane permeability for ADP are necessary as well. In conclusion, cardiomyocytes in rat heart become mature on the level of intracellular architecture and energy metabolism at the age of 3months
    corecore