13,580 research outputs found

    Apollo-Soyuz pamphlet no. 3: Sun, stars, in between

    Get PDF
    The structure of the sun and its surface temperature and brightness are discussed as background for explaining the ASTP joint experiment to photograph the solar corona from Soyuz while the Apollo spacecraft created an artificial eclipse by blocking out the sun. Stellar spectra, stellar evolution, and the Milky Way galaxy are explored in relation to the MA-083 experiment to survey the sky for extreme ultraviolet sources and background radiation. Interstellar gas and the spectrum of helium are discussed in relation to the MA-088 experiment designed to detect interstellar helium entering the solar system and to measure its density and motion

    Apollo-Soyuz pamphlet no. 5: The earth from orbit

    Get PDF
    Astronaut training in the recognition of various geological features from space is described as well as the cameras, lenses and film used in experiment MA-136 to measure their effectiveness in photographing earth structural features from orbit. Aerosols that affect climate and weather are discussed in relation to experiment Ma-007 which relied on infrared observations of the setting or rising sun, as seen from Apollo, to measure the amount of dust and droplets in the lower 150 km of earth's atmosphere. The line spectra of atomic oxygen and nitrogen and their densities at 22 km above the earth's surface are examined along with experiment MA-059 which measured ultraviolet absorption at that altitude

    Apollo-Soyuz pamphlet no. 9: General science

    Get PDF
    The objectives and planning activities for the Apollo-Soyuz mission are summarized. Aspects of the space flight considered include the docking module and launch configurations, spacecraft orbits, and weightlessness. The 28 NASA experiments conducted onboard the spacecraft are summarized. The contributions of the mission to the fields of astronomy, geoscience, biology, and materials sciences resulting from the experiments are explored

    Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays

    Get PDF
    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed

    Apollo-Soyuz pamphlet no. 8: Zero-g technology

    Get PDF
    The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028)

    Apollo-Soyuz pamphlet no. 1: The flight

    Get PDF
    The goals of the Apollo-Soyuz Test Project are described in this first in a series of nine pamphlets designed as a curriculum supplement for teachers, supervisors, curriculum specialists, and textbook writers as well as for the general public. Aspects of the space flight covered include descriptions of the astronaut-cosmonaut meeting and of the spacecraft and landing module; spacecraft launch; control, and rendezvous; crew work schedule; and telemetry. Experiments performed are listed in tables, and their major results are summarized

    Apollo-Soyuz pamphlet no. 6: Cosmic ray dosage

    Get PDF
    The radiation hazard inside spacecraft is discussed with emphasis on its effects on the crew, biological specimens, and spacecraft instruments. The problem of light flash sensations in the eyes of astronauts is addressed and experiment MA-106 is described. In this experiment, light flashes seen by blindfolded astronauts were counted and high energy cosmic ray intensity in the command module cabin were measured. The damage caused by cosmic ray hits on small living organisms was investigated in the Biostack 3 experiment (MA-107). Individual cosmic rays were tracked through layers of bacterial spores, small seeds, and eggs interleaved with layers of AgCl-crystal wafers, special plastic, and special photographic film that registered each cosmic ray particle passed

    Productivity and forage quality of a phytodiverse semi-natural grassland under various management regimes

    Get PDF
    Grassland management experiment (GrassMan) was set up in 2008 on a permanent semi-natural grassland in the Solling uplands, Germany. The main research focus is on the ecosystem functioning of the phytodiverse grassland (e.g. productivity and forage quality, water and nutrient fluxes). The aim of our study was to analyse the effects of vegetation composition and functional diversity on productivity and forage quality of the semi-natural permanent grassland. Variation in sward composition was achieved by herbicide application and resulted in three sward types: control sward type (without herbicide application), monocot-reduced and dicot-reduced. Further management factors included different nutrient input levels (without fertilizer and 180-30-100 kg/ha of N-P-K per year) and use intensity (cut once or three times a year). Functional diversity was determined by estimation of the yield shares for each species in the species composition and their specific functional characteristics. Forage quality was analysed by near infrared spectroscopy (NIRS). While sward type influenced the forage quality, yield variation was explained mainly by the management regime

    An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Get PDF
    This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion
    • ā€¦
    corecore