100 research outputs found

    Platinum Nanoparticles Inhibit Intracellular ROS Generation and Protect Against Cold Atmospheric Plasma-induced Cytotoxicity

    Get PDF
    Platinum nanoparticles (PtNPs) have been investigated for their antioxidant abilities in a range of biological and other applications. The ability to reduce off-target cold atmospheric plasma (CAP) cytotoxicity would be useful in Plasma Medicine; however, little has been published to date about the ability of PtNPs to reduce or inhibit the effects of CAP. Here we investigate whether PtNPs can protect against CAP-induced cytotoxicity in cancerous and non-cancerous cell lines. PtNPs were shown to dramatically reduce intracellular reactive species (RONS) production in U-251 MG cells. However, RONS generation was unaffected by PtNPs in medium without cells. PtNPs protect against CAP induced mitochondrial membrane depolarization, but not cell membrane permeabilization which is a CAP-induced RONS-independent event. PtNPs act as potent intracellular scavengers of reactive species and can protect against CAP induced cytotoxicity. PtNPs, showing no significant biocorrosion, may be useful as a catalytic antioxidant for healthy tissue and for protecting against CAP-induced tissue damage

    The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions

    Get PDF
    We report the abundances of a selected set of “lithophile” trace elements (including lanthanides, actinides and high field strength elements) and high-precision oxygen isotope analyses of a comprehensive suite of aubrites. Two distinct groups of aubrites can be distinguished: (a) the main-group aubrites display flat or light-REE depleted REE patterns with variable Eu and Y anomalies; their pyroxenes are light-REE depleted and show marked negative Eu anomalies; (b) the Mount Egerton enstatites and the silicate fraction from Larned display distinctive light-REE enrichments, and high Th/Sm ratios; Mount Egerton pyroxenes have much less pronounced negative Eu anomalies than pyroxenes from the main-group aubrites. Leaching experiments were undertaken to investigate the contribution of sulfides to the whole rock budget of the main-group aubrites. Sulfides contain in most cases at least 50% of the REEs and of the actinides. Among the elements we have analyzed, those displaying the strongest lithophile behaviors are Rb, Ba, Sr and Sc. The homogeneity of the Δ17O values obtained for main-group aubrite falls [Δ17O = +0.009 ± 0.010‰ (2σ)] suggests that they originated from a single parent body whose differentiation involved an early phase of large-scale melting that may have led to the development of a magma ocean. This interpretation is at first glance in agreement with the limited variability of the shapes of the REE patterns of these aubrites. However, the trace element concentrations of their phases cannot be used to discuss this hypothesis, because their igneous trace-element signatures have been modified by subsolidus exchange. Finally, despite similar O isotopic compositions, the marked light-REE enrichments displayed by Mount Egerton and Larned suggest that they are unrelated to the main-group aubrites and probably originated from a distinct parent body

    The effects of melt depletion and metasomatism on highly siderophile and strongly chalcophile elements: S–Se–Te–Re–PGE systematics of peridotite xenoliths from Kilbourne Hole, New Mexico

    Get PDF
    The composition of the Earth’s upper mantle is a function of melt depletion and subsequent metasomatism; the latter obscuring many of the key characteristics of the former, and potentially making predictions of Primitive Upper Mantle (PUM) composition problematic. To date, estimates of PUM abundances of highly siderophile element (HSE = platinum group elements (PGE) and Re) and the strongly chalcophile elements Se and Te, have been the subject of less scrutiny than the lithophile elements. Critically, estimates of HSE and strongly chalcophile element abundances in PUM may have been derived by including a large number of metasomatized and refertilized samples whose HSE and chalcophile element abundances may not be representative of melt depletion alone. Unravelling the effects of metasomatism on the S–Se–Te–HSE abundances in peridotite xenoliths from Kilbourne Hole, New Mexico, USA, potentially provides valuable insights into the abundances of HSE and strongly chalcophile element abundances in PUM. Superimposed upon the effects of melt depletion is the addition of metasomatic sulfide in approximately half of the xenoliths from this study, while the remaining half have lost sulfide to a late S-undersaturated melt. Despite these observations, the Kilbourne Hole peridotite xenoliths have HSE systematics that are, in general, indistinguishable from orogenic peridotites and peridotite xenoliths used for determination of PUM HSE abundances. This study represents the first instance where Se-Te-HSE systematics in peridotite xenoliths are scrutinized in detail in order to test their usefulness for PUM estimates. Despite earlier studies attesting to the relative immobility of Se during supergene weathering, low S, Se, Os and Se/Te in peridotite xenoliths suggests that Se may be more mobile than originally thought, and for this reason, peridotite xenoliths may not be suitable for making predictions of the abundance of these elements in PUM. Removal of Se, in turn, lowers the Se/Te in basalt-borne xenolithic peridotites to subchondritic values. This is in contrast to what has been recently reported in kimberlite-borne peridotite xenoliths. Moreover, Te added to melt depleted peridotite in metasomatic sulfide is more difficult to remove in a S-undersaturated melt than the HSE and Se due to the generation of micron-scale tellurides. The effects of these processes in orogenic peridotites and xenoliths, from which PUM abundances have been calculated, require further scrutiny before unequivocal Se-Te-Re-PGE values for PUM can be derived

    Sequence and tectonostratigraphy of the Neoproterozoic (Tonian-Cryogenian) Amundsen Basin prior to supercontinent (Rodinia) breakup

    Get PDF
    Intracontinental basins that lack obvious compartmentalization and extensional faults may lie inboard of, and have the same timing as, rifted continental margins. Neoproterozoic successions of northwest Laurentia are an example where rift and intracontinental basins are spatially and temporally related. This study describes Tonian-Cryogenian pre-rift strata of the upper Shaler Supergroup, deposited in the Amundsen Basin (Victoria Island, Canada), in which five transgressive-regressive (T-R) cycles are identified. The pre-breakup succession in the Amundsen Basin has stratigraphic architecture that differs from adjacent, fault-bound rift basins. There is little evidence for extensive progradation, which resulted in broad, layer-cake stratigraphy where shallow-water facies predominate, deposited on a storm-dominated ramp. Correlation between the Amundsen and Fifteenmile (Yukon) basins is complicated by differing rates and regimes of subsidence, with the exception of a basin-deepening event that occurred in both basins and correlates with the global Bitter Springs isotope stage, initiating sometime after ~811 Ma. Contrary to previous correlations, we propose that the upper Shaler Supergroup and Little Dal Group of the Mackenzie Mountains Supergroup (Mackenzie Basin) are equivalent to the entire Fifteenmile Group. The identification of cycles and subsidence patterns in the Amundsen Basin prior to Rodinia break-up has implications for understanding the stratigraphic architecture of other intracontinental sag basins. We recognize three tectonostratigraphic units for the upper Shaler Supergroup that record an initial sag basin, followed by early extension and thermal doming, and finally rifting of the Amundsen Basin. Subsidence possibly was related to multiple cycles of intra-plate extension that complemented coeval fault-controlled subsidence. Analysis of pre-rift strata in the Amundsen Basin supports multi-phase, non-correlative break-up of Rodinia along the northwest margin of Laurentia

    Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis

    Get PDF
    A specific mutation of Escherichia coli ribosomal protein S5, in which glycine is changed to aspartate at position 28 [S5(G28D)], results in cold sensitivity and defects in ribosome biogenesis and translational fidelity. In an attempt to understand the roles of S5 in these essential cellular functions, we selected extragenic suppressors and identified rimJ as a high-copy suppressor of the cold-sensitive phenotype associated with the S5(G28D) mutation. Our studies indicate that RimJ overexpression suppresses the growth defects, anomalous ribosome profiles and mRNA misreading exhibited by the S5(G28D) mutant strain. Although previously characterized as the N-acetyltransferase of S5, our data indicate that RimJ, when devoid of acetyltransferase activity, can suppress S5(G28D) defects thus indicating that the suppression activity of RimJ is not dependent on its acetyltransferase activity. Additionally, RimJ appears to associate with pre-30S subunits indicating that it acts on the ribonucleoprotein particle. These findings suggest that RimJ has evolved dual functionality; it functions in r-protein acetylation and as a ribosome assembly factor in E. coli

    Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr-Nd-Pb-O-Hf-Os) and petrological view

    Get PDF
    The Cenozoic igneous activity of Sardinia is essentially concentrated in the 38-0.1 Myr time range. On the basis of volcanological, petrographic, mineralogical, geochemical and isotopic considerations, two main rock types can be defined. The first group, here defined SR (Subduction-Related) comprises Late Eocene-Middle Miocene (~ 38-15 Ma) igneous rocks, essentially developed along the Sardinian Trough, a N-S oriented graben developed during the Late Oligocene-Middle Miocene. The climax of magmatism is recorded during the Early Miocene (~ 23-18 Ma) with minor activity before and after this time range. Major and trace element indicators, as well as Sr-Nd-Pb-Hf-Os-O isotope systematic indicate complex petrogenetic processes including subduction-related metasomatism, variable degrees of crustal contamination at shallow depths, fractional crystallization and basic rock partial melting. Hybridization processes between mantle and crustal melts and between pure mantle and crustally contaminated mantle melts increased the isotopic and elemental variability of the composition of the evolved (intermediate to acid) melts. The earliest igneous activity, pre-dating the Early Miocene magmatic climax, is related to the pushing effects exerted by the Alpine Tethys over the Hercynian or older lower crust, rather than to dehydration processes of the oceanic plate itself. The second group comprises volcanic rocks emplaced from ~ 12 to ~ 0.1 Ma. The major and, partially, trace element content of these rocks roughly resemble magmas emplaced in within-plate tectonic settings. From a Sr-Nd-Pb-Hf-Os isotopic point of view, it is possible to subdivide these rocks in two subgroups. The first, defined RPV (Radiogenic Pb Volcanic) group comprises the oldest and very rare products (~ 12-4.4 Ma) occurring only in the southern sectors of Sardinia. The second group, defined UPV (Unradiogenic Pb Volcanic), comprises rocks emplaced in the remaining central and northern sectors during the ~ 4.8-0.1 Ma time range. The origin of the RPV rocks remains quite enigmatic, since they formed just a few Myr after the end of a subduction-related igneous activity but do not show any evidence of slab-derived metasomatic effects. In contrast, the complex origin of the mafic UPV rocks, characterized by low 206Pb/204Pb (17.4-18.1), low 143Nd/144Nd (0.51232-0.51264), low 176Hf/177Hf (0.28258-0.28280), mildly radiogenic 87Sr/86Sr (~ 0.7044) and radiogenic 187Os/188Os ratios (0.125-0.160) can be explained with a mantle source modified after interaction with ancient delaminated lower crustal lithologies. The strong isotopic difference between the RPV and UPV magmas and the absence of lower crustal-related features in the SR and RPV remain aspects to be solved

    Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

    Get PDF
    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration
    corecore