694 research outputs found

    Characterization of a calcium phospho-silicated apatite with iron oxide inclusions

    Get PDF
    An iron oxide containing calcium phosphate–silicate hydroxyapatite was synthesized by calcination at 900 °C of a sample obtained by precipitation in basic aqueous solution of Ca, P, Si, Fe and Mg containing acidic solution made from dissolution of natural minerals. XRD and FTIR were used for crystallographic characterization of the main apatitic phase. Its composition was determined using ICP-AES. EDX coupled with SEM and TEM evidenced the heterogeneity of this compound and the existence of iron–magnesium oxide. Magnetic analyses highlighted that this phase was non-stoichiometric magnesioferrite (Mg1.2Fe1.8O3.9) spherical nanoparticles. Those analyses also put into evidence the role of calcination in synthesis. Carbonates detected by FTIR and estimated by SEM-EDX in non-calcinated sample were removed from apatitic structure, and crystallization of apatite was enhanced during heating. Moreover, there was phase segregation that led to magnesioferrite formation

    Inhomogeneity of asteroid 2008 TC3 (Almahata Sitta meteorites) revealed through magnetic susceptibility measurements

    Get PDF
    Magnetic susceptibility measurements were performed on freshly fallen Almahata Sitta meteorites. Most recovered samples are polymict ureilites. Those found in the first four months since impact, before the meteorites were exposed to rain, have a magnetic susceptibility in the narrow range of 4.92 ± 0.08 log 10-9 Am2/kg close to the range of other ureilite falls 4.95 ± 0.14 log 10-9 Am2/kg reported by Rochette et al. (2009). The Almahata Sitta samples collected one year after the fall have similar values (4.90 ± 0.06 log 10-9 Am2/kg), revealing that the effect of one-year of terrestrial weathering was not severe yet. However, our reported values are higher than derived from polymict (brecciated) ureilites 4.38 ± 0.47 log 10-9 Am2/kg (Rochette et al. 2009) containing both falls and finds confirming that these are significantly weathered. Additionally other fresh-looking meteorites of non-ureilitic compositions were collected in the Almahata Sitta strewn field. Magnetic susceptibility measurements proved to be a convenient non-destructive method for identifying non-ureilitic meteorites among those collected in the Almahata Sitta strewn field, even among fully crusted. Three such meteorites, no. 16, 25, and 41, were analyzed and their composition determined as EH6, H5 and EL6 respectively (Zolensky et al., 2010). A high scatter of magnetic susceptibility values among small (< 5 g) samples revealed high inhomogeneity within the 2008 TC3 material at scales below 1-2 cm.Peer reviewe

    57Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: Implications for weathering processes

    Get PDF
    Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as dense collection areas. This desert is the driest on Earth, one of the most arid, uninhabitable locals with semi-arid, arid and hyper-arid conditions. The meteorites studied here were collected from within the dense collection area of San Juan at the Central Depression and Coastal Range of Atacama Desert. [superscript 57]Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe-bearing phases and in particular the amount of oxidized iron in the terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification and differentiation of the weathering products in the ordinary chondrites found in the San Juan area of Atacama Desert

    Unraveling the simultaneous shock magnetization and demagnetization of rocks

    No full text
    International audienceIn the natural case of an hypervelocity impact on a planetary or asteroidal surface, two competing phenomena occur: partial or complete shock demagnetization of pre-existing remanence and acquisition of shock remanent magnetization (SRM). In this paper, to better understand the effects of shock on the magnetic history of rocks, we simulate this natural case through laser shock experiments in controlled magnetic field. As previously shown, SRM is strictly proportional to the ambient field at the time of impact and parallel to the ambient field. Moreover, there is no directional or intensity heterogeneity of the SRM down to the scale of ∼0.2mm. We also show that the intensity of SRM is independent of the initial remanence state of the rock. Shock demagnetization and magnetization appear to be distinct phenomena that do not necessarily affect identical populations of grains. As such, shock demagnetization is not a limiting case of shock magnetization in zero field

    Archaeological Geophysical Prospection in Peatland Environments: case studies and suggestions for future practice

    Get PDF
    Peatland environments, in contrast to ‘dry-land’ sites, preserve organic material, including anthropogenic objects, because they are anaerobic, and are therefore of great importance to archaeology. Peat also preserves macro- and micro- paleoenvironmental evidence and is the primary resource for understanding past climates and ecology. Archaeological sites often lie within or at the base of wet, deep, homogenous peat rendering them invisible to surface observers. As a result, they most often c..

    Impact demagnetization of the Martian crust: Current knowledge and future directions

    Get PDF
    The paleomagnetism of the Martian crust has important implications for the history of the dynamo, the intensity of the ancient magnetic field, and the composition of the crust. Modification of crustal magnetization by impact cratering is evident from the observed lack of a measurable crustal field (at spacecraft altitude) within the youngest large impact basins (e.g., Hellas, Argyre and Isidis). It is hoped that comparisons of the magnetic intensity over impact structures, forward modeling of subsurface magnetization, and experimental results of pressure-induced demagnetization of rocks and minerals will provide constraints on the primary magnetic mineralogy in the Martian crust. Such an effort requires: (i) accurate knowledge of the spatial distribution of the shock pressures around impact basins, (ii) crustal magnetic intensity maps of adequate resolution over impact structures, and (iii) determination of demagnetization properties for individual rocks and minerals under compression. In this work, we evaluate the current understanding of these three conditions and compile the available experimental pressure demagnetization data on samples bearing (titano-) magnetite, (titano-) hematite, and pyrrhotite. We find that all samples demagnetize substantially at pressures of a few GPa and that the available data support significant modification of the crustal magnetic field from both large and small impact events. However, the amount of demagnetization with applied pressure does not vary significantly among the possible carrier phases. Therefore, the presence of individual mineral phases on Mars cannot be determined from azimuthally averaged demagnetization profiles over impact basins at present. The identification of magnetic mineralogy on Mars will require more data on pressure demagnetization of thermoremanent magnetization and forward modeling of the crustal field subject to a range of plausible initial field and demagnetization patterns.United States. National Aeronautics and Space Administration (NNG04GD17G)United States. National Aeronautics and Space Administration (NNX07AQ69G)United States. National Aeronautics and Space Administration (NNX06AD14G
    corecore