45 research outputs found

    Conformational Dynamics of Single pre-mRNA Molecules During \u3cem\u3eIn Vitro\u3c/em\u3e Splicing

    Get PDF
    The spliceosome is a complex small nuclear RNA (snRNA)-protein machine that removes introns from pre-mRNAs via two successive phosphoryl transfer reactions. The chemical steps are isoenergetic, yet splicing requires at least eight RNA-dependent ATPases responsible for substantial conformational rearrangements. To comprehensively monitor pre-mRNA conformational dynamics, we developed a strategy for single-molecule FRET (smFRET) that uses a small, efficiently spliced yeast pre-mRNA, Ubc4, in which donor and acceptor fluorophores are placed in the exons adjacent to the 5′ and 3′ splice sites. During splicing in vitro, we observed a multitude of generally reversible time-and ATP-dependent conformational transitions of individual pre-mRNAs. The conformational dynamics of branchpoint and 3′-splice site mutants differ from one another and from wild type. Because all transitions are reversible, spliceosome assembly appears to be occurring close to thermal equilibrium

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial

    Get PDF
    Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy. Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388. Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16, p<0·0001). Interpretation: Among patients with recent cerebral ischaemia, intensive antiplatelet therapy did not reduce the incidence and severity of recurrent stroke or TIA, but did significantly increase the risk of major bleeding. Triple antiplatelet therapy should not be used in routine clinical practice

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel

    Get PDF

    Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era

    Get PDF
    The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described

    Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial

    Get PDF
    Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy.Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388.Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16,

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials
    corecore