7 research outputs found

    Entanglement Structure of Deconfined Quantum Critical Points

    Full text link
    We study the entanglement properties of deconfined quantum critical points. We show not only that these critical points may be distinguished by their entanglement structure but also that they are in general more highly entangled that conventional critical points. We primarily focus on computations of the entanglement entropy of deconfined critical points in 2+1 dimensions, drawing connections to topological entanglement entropy and a recent conjecture on the monotonicity under RG flow of universal terms in the entanglement entropy. We also consider in some detail a variety of issues surrounding the extraction of universal terms in the entanglement entropy. Finally, we compare some of our results to recent numerical simulations.Comment: 12 pages, 4 figure

    Yang--Baxter symmetry in integrable models: new light from the Bethe Ansatz solution

    Full text link
    We show how any integrable 2D QFT enjoys the existence of infinitely many non--abelian {\it conserved} charges satisfying a Yang--Baxter symmetry algebra. These charges are generated by quantum monodromy operators and provide a representation of qq-deformed affine Lie algebras. We review and generalize the work of de Vega, Eichenherr and Maillet on the bootstrap construction of the quantum monodromy operators to the sine--Gordon (or massive Thirring) model, where such operators do not possess a classical analogue. Within the light--cone approach to the mT model, we explicitly compute the eigenvalues of the six--vertex alternating transfer matrix \tau(\l) on a generic physical state, through algebraic Bethe ansatz. In the thermodynamic limit \tau(\l) turns out to be a two--valued periodic function. One determination generates the local abelian charges, including energy and momentum, while the other yields the abelian subalgebra of the (non--local) YB algebra. In particular, the bootstrap results coincide with the ratio between the two determinations of the lattice transfer matrix.Comment: 30 page

    Zonotopes and four-dimensional superconformal field theories

    Get PDF
    The a-maximization technique proposed by Intriligator and Wecht allows us to determine the exact R-charges and scaling dimensions of the chiral operators of four-dimensional superconformal field theories. The problem of existence and uniqueness of the solution, however, has not been addressed in general setting. In this paper, it is shown that the a-function has always a unique critical point which is also a global maximum for a large class of quiver gauge theories specified by toric diagrams. Our proof is based on the observation that the a-function is given by the volume of a three dimensional polytope called "zonotope", and the uniqueness essentially follows from Brunn-Minkowski inequality for the volume of convex bodies. We also show a universal upper bound for the exact R-charges, and the monotonicity of a-function in the sense that a-function decreases whenever the toric diagram shrinks. The relationship between a-maximization and volume-minimization is also discussed.Comment: 29 pages, 15 figures, reference added, typos corrected, version published in JHE

    The nonperturbative functional renormalization group and its applications

    Full text link
    The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultraviolet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilson's RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.Comment: v2) Review article, 93 pages + bibliography, 35 figure

    The nonperturbative functional renormalization group and its applications

    No full text
    corecore