100 research outputs found
Together, yet still not equal? Sex integration in equestrian sport
Sex segregation is a core organising principle of most modern sports and is a key element in the marginalisation and subordination of girls and women in sport and beyond. In this article I explore the only Olympic-level sport which is not organised around sex segregation – equestrian sport – in order to consider the implications of sex integration for female participants. I draw on a study conducted on elite riders that found that although sex integration in equestrian sport does not lead to female participants being excluded from high-level competition, men continue to perform disproportionately well. This suggests that although sex integration may be an important step towards breaking down gender hierarchies in sport, without accompanying wider changes in gender norms and expectations, sex integration alone will not be enough to achieve greater gender equality in equestrian sport
Background Free‐Tropospheric Ice Nucleating Particle Concentrations at Mixed‐Phase Cloud Conditions
Clouds containing ice are vital for precipitation formation and are important in determining
the Earths radiative budget. However primary formation of ice in clouds is not fully understood. In the
presence of ice nucleating particles (INPs), the phase change to ice is promoted, but identification and
quantification of INPs in a natural environment remains challenging because of their low numbers. In this
paper we quantify INP number concentrations in the free troposphere (FT) as measured at the High Altitude
Research Station Jungfraujoch during the years 2014 to 2017. INPs
were measured at conditions relevant for mixed-phase cloud formation at 241 to 242 K
Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells
Prognosis of patients with glioblastoma (GBM) remains very poor, thus making the development of new drugs urgent. Resveratrol (Rsv) is a natural compound that has several beneficial effects such as neuroprotection and cytotoxicity for several GBM cell lines. Here we evaluated the mechanism of action of Rsv on human GBM cell lines, focusing on the role of autophagy and its crosstalk with apoptosis and cell cycle control. We further evaluated the role of autophagy and the effect of Rsv on GBM Cancer Stem Cells (gCSCs), involved in GBM resistance and recurrence. Glioma cells treated with Rsv was tested for autophagy, apoptosis, necrosis, cell cycle and phosphorylation or expression levels of key players of these processes. Rsv induced the formation of autophagosomes in three human GBM cell lines, accompanied by an upregulation of autophagy proteins Atg5, beclin-1 and LC3-II. Inhibition of Rsv-induced autophagy triggered apoptosis, with an increase in Bax and cleavage of caspase-3. While inhibition of apoptosis or autophagy alone did not revert Rsv-induced toxicity, inhibition of both processes blocked this toxicity. Rsv also induced a S-G2/M phase arrest, accompanied by an increase on levels of pCdc2(Y15), cyclin A, E and B, and pRb (S807/811) and a decrease of cyclin D1. Interestingly, this arrest was dependent on the induction of autophagy, since inhibition of Rsv-induced autophagy abolishes cell cycle arrest and returns the phosphorylation of Cdc2(Y15) and Rb(S807/811), and levels of cyclin A, and B to control levels. Finally, inhibition of autophagy or treatment with Rsv decreased the sphere formation and the percentage of CD133 and OCT4-positive cells, markers of gCSCs. In conclusion, the crosstalk among autophagy, cell cycle and apoptosis, together with the biology of gCSCs, has to be considered in tailoring pharmacological interventions aimed to reduce glioma growth using compounds with multiple targets such as Rsv
Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
Aim Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location Tundra biome. Time period Data collected between 1964 and 2016. Major taxa studied 295 tundra vascular plant species. Methods We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.Peer reviewe
Global plant trait relationships extend to the climatic extremes of the tundra biome
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.Peer reviewe
Physiological Roles of ArcA, Crp, and EtrA and Their Interactive Control on Aerobic and Anaerobic Respiration in Shewanella oneidensis
In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters
Characterization of Archaeal Community in Contaminated and Uncontaminated Surface Stream Sediments
Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle
Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach
Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments
Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance : a retrospective cohort study
BACKGROUND : Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drugsusceptibility
testing is slow and expensive, and commercial genotypic assays screen only common resistancedetermining
mutations. We used whole-genome sequencing to characterise common and rare mutations predicting
drug resistance, or consistency with susceptibility, for all fi rst-line and second-line drugs for tuberculosis.
METHODS : Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis
genomes. For 23 candidate genes identifi ed from the drug-resistance scientifi c literature, we algorithmically
characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised.
We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an
independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those
characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance.
FINDINGS : We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these
mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI
90·7–93·7) and 98·4% specifi city (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because
uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had
higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance
determinants were identifi ed among mutations under selection pressure in non-candidate genes.
INTERPRETATION : A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used
clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically
predicted. This approach could be integrated into routine diagnostic workfl ows, phasing out phenotypic drugsusceptibility
testing while reporting drug resistance early.Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.http://www.thelancet.com/infectionhb201
- …