23 research outputs found

    GESPAR: Efficient Phase Retrieval of Sparse Signals

    Full text link
    We consider the problem of phase retrieval, namely, recovery of a signal from the magnitude of its Fourier transform, or of any other linear transform. Due to the loss of the Fourier phase information, this problem is ill-posed. Therefore, prior information on the signal is needed in order to enable its recovery. In this work we consider the case in which the signal is known to be sparse, i.e., it consists of a small number of nonzero elements in an appropriate basis. We propose a fast local search method for recovering a sparse signal from measurements of its Fourier transform (or other linear transform) magnitude which we refer to as GESPAR: GrEedy Sparse PhAse Retrieval. Our algorithm does not require matrix lifting, unlike previous approaches, and therefore is potentially suitable for large scale problems such as images. Simulation results indicate that GESPAR is fast and more accurate than existing techniques in a variety of settings.Comment: Generalized to non-Fourier measurements, added 2D simulations, and a theorem for convergence to stationary poin

    Study of ordered hadron chains with the ATLAS detector

    Get PDF
    La lista completa de autores que integran el documento puede consultarse en el archivo

    A search for resonances decaying into a Higgs boson and a new particle X in the XH→qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (HH) and a new particle (XX) is reported, utilizing 36.1 fb−1^{-1} of proton-proton collision data at s=\sqrt{s} = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle XX is assumed to decay to a pair of light quarks, and the fully hadronic final state XH→qqˉâ€ČbbˉXH \rightarrow q\bar q'b\bar b is analysed. The search considers the regime of high XHXH resonance masses, where the XX and HH bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XHXH mass versus XX mass is scanned for evidence of a signal, over a range of XHXH resonance mass values between 1 TeV and 4 TeV, and for XX particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XHXH and XX masses, on the production cross-section of the XH→qqˉâ€ČbbˉXH\rightarrow q\bar q'b\bar b resonance

    Consensus statement on the diagnosis of multiple system atrophy

    Full text link
    We report the results of a consensus conference on the diagnosis of multiple system atrophy (MSA). We describe the clinical features of the disease, which include four domains: autonomic failure/urinary dysfunction, parkinsonism and cerebellar ataxia, and corticospinal dysfunction. We set criteria to define the relative importance of these features. The diagnosis of possible MSA requires one criterion plus two features from separate domains. The diagnosis of probable MSA requires the criterion for autonomic failure/urinary dysfunction plus poor levodopa responsive parkinsonism or cerebellar ataxia. The diagnosis of definite MSA requires pathological confirmation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41757/1/10286_2006_Article_BF02309628.pd

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    GESPAR: Efficient Sparse Phase Retrieval with Application to Optics

    No full text
    Publication in the conference proceedings of SampTA, Bremen, Germany, 201

    Spontaneous Structural Transition in Phospholipid-Inspired Aromatic Phosphopeptide Nanostructures

    No full text
    Phospholipid membranes could be considered a prime example of the ability of nature to produce complex yet ordered structures, by spontaneous and efficient self-assembly. Inspired by the unique properties and architecture of phospholipids, we designed simple amphiphilic decapeptides, intended to fold in the center of the peptide sequence, with a phosphorylated serine “head” located within a central turn segment, and two hydrophobic “tails”. The molecular design also included the integration of the diphenylalanine motif, previously shown to facilitate self-assembly and increase nanostructure stability. Secondary structure analysis of the peptides indeed indicated the presence of stabilized conformations in solution, with a central turn connecting two hydrophobic “tails”, and interactions between the hydrophobic strands. The mechanisms of assembly into supramolecular structures involved structural transitions between different morphologies, which occurred over several hours, leading to the formation of distinctive nanostructures, including half-elliptical nanosheets and curved tapes. The phosphopeptide building blocks appear to self-assemble <i>via</i> a particular combination of aromatic, hydrophobic and ionic interactions, as well as hydrogen bonding, as demonstrated by proposed constructed simulated models of the peptides and self-assembled nanostructures. Molecular dynamics simulations also gave insight into mechanisms of structural transitions of the nanostructures at a molecular level. Because of the biocompatibility of peptides, the phosphopeptide assemblies allow for expansion of the library of biomolecular nanostructures available for future design and application of biomedical devices

    A Contact-Free Optical Device for the Detection of Pulmonary Congestion—A Pilot Study

    No full text
    Background: The cost of heart failure hospitalizations in the US alone is over USD 10 billion per year. Over 4 million Americans are hospitalized every year due to heart failure (HF), with a median length of stay of 4 days and an in-hospital mortality rate that exceeds 5%. Hospitalizations of patients with HF can be prevented by early detection of lung congestion. Our study assessed a new contact-free optical medical device used for the early detection of lung congestion. Methods: The Gili system is an FDA-cleared device used for measuring chest motion vibration data. Lung congestion in the study was assessed clinically and verified via two cardiologists. An algorithm was developed using machine learning techniques, and cross-validation of the findings was performed to estimate the accuracy of the algorithm. Results: A total of 227 patients were recruited (101 cases vs. 126 controls). The sensitivity and specificity for the device in our study were 0.91 (95% CI: 0.86–0.93) and 0.91 (95% CI: 0.87–0.94), respectively. In all instances, the observed estimates of PPVs and NPVs were at least 0.82 and 0.90, respectively. The accuracy of the algorithm was not affected by different covariates (including respiratory or valvular conditions). Conclusions: This study demonstrates the efficacy of a contact-free optical device for detecting lung congestion. Further validation of the study results across a larger and precise scale is warranted
    corecore