523 research outputs found

    Estimating conditional quantiles with the help of the pinball loss

    Full text link
    The so-called pinball loss for estimating conditional quantiles is a well-known tool in both statistics and machine learning. So far, however, only little work has been done to quantify the efficiency of this tool for nonparametric approaches. We fill this gap by establishing inequalities that describe how close approximate pinball risk minimizers are to the corresponding conditional quantile. These inequalities, which hold under mild assumptions on the data-generating distribution, are then used to establish so-called variance bounds, which recently turned out to play an important role in the statistical analysis of (regularized) empirical risk minimization approaches. Finally, we use both types of inequalities to establish an oracle inequality for support vector machines that use the pinball loss. The resulting learning rates are min--max optimal under some standard regularity assumptions on the conditional quantile.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ267 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Fast rates for support vector machines using Gaussian kernels

    Full text link
    For binary classification we establish learning rates up to the order of nβˆ’1n^{-1} for support vector machines (SVMs) with hinge loss and Gaussian RBF kernels. These rates are in terms of two assumptions on the considered distributions: Tsybakov's noise assumption to establish a small estimation error, and a new geometric noise condition which is used to bound the approximation error. Unlike previously proposed concepts for bounding the approximation error, the geometric noise assumption does not employ any smoothness assumption.Comment: Published at http://dx.doi.org/10.1214/009053606000001226 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore