113 research outputs found

    Common Origin of Soft mu-tau and CP Breaking in Neutrino Seesaw and the Origin of Matter

    Full text link
    Neutrino oscillation data strongly support mu-tau symmetry as a good approximate flavor symmetry of the neutrino sector, which has to appear in any viable theory for neutrino mass-generation. The mu-tau breaking is not only small, but also the source of Dirac CP-violation. We conjecture that both discrete mu-tau and CP symmetries are fundamental symmetries of the seesaw Lagrangian (respected by interaction terms), and they are only softly broken, arising from a common origin via a unique dimension-3 Majorana mass-term of the heavy right-handed neutrinos. From this conceptually attractive and simple construction, we can predict the soft mu-tau breaking at low energies, leading to quantitative correlations between the apparently two small deviations \theta_{23} - 45^o and \theta_{13} - 0^o. This nontrivially connects the on-going measurements of mixing angle \theta_{23} with the upcoming experimental probes of \theta_{13}. We find that any deviation of \theta_{23} - 45^o must put a lower limit on \theta_{13}. Furthermore, we deduce the low energy Dirac and Majorana CP violations from a common soft-breaking phase associated with mu-tau breaking in the neutrino seesaw. Finally, from the soft CP breaking in neutrino seesaw we derive the cosmological CP violation for the baryon asymmetry via leptogenesis. We fully reconstruct the leptogenesis CP-asymmetry from the low energy Dirac CP phase and establish a direct link between the cosmological CP-violation and the low energy Jarlskog invariant. We predict new lower and upper bounds on the \theta_{13} mixing angle, 1^o < \theta_{13} < 6^o. In addition, we reveal a new hidden symmetry that dictates the solar mixing angle \theta_12 by its group-parameter, and includes the conventional tri-bimaximal mixing as a special case, allowing deviations from it.Comment: 60pp, JCAP in Press, v2: only minor stylistic refinements (added Daya Bay's future sensitivity in Figs.2+8, shortened some eqs, added new Appendix-A and some references), comments are welcome

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present final searches of the anomalous gammaWW and ZWW trilinear gauge boson couplings from WW and WZ production using lepton plus dijet final states and a combination with results from Wgamma, WW, and WZ production with leptonic final states. The analyzed data correspond to up to 8.6/fb of integrated luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96 TeV. We set the most stringent limits at a hadron collider to date assuming two different relations between the anomalous coupling parameters Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2 TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154, -0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization, and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings parameterization. We also present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL

    Measurement of the forward-backward asymmetry in Λ0b and Λ¯0b baryon production in pp¯ collisions at s√=1.96 TeV

    Get PDF
    We measure the forward-backward asymmetry in the production of Λ0b and Λ¯0b baryons as a function of rapidity in pp¯ collisions at s√=1.96  TeV using 10.4  fb−1 of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of Λ0b or Λ¯0b particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity y in the range 0.1<|y|<2.0 is A=0.04±0.07(stat)±0.02(syst)

    Measurement of angular correlations of jets at sqrt(s)=1.96 TeV and determination of the strong coupling at high momentum transfers

    Get PDF
    We present a measurement of the average value of a new observable at hadron colliders that is sensitive to QCD dynamics and to the strong coupling constant, while being only weakly sensitive to parton distribution functions. The observable measures the angular correlations of jets and is defined as the number of neighboring jets above a given transverse momentum threshold which accompany a given jet within a given distance Delta-R in the plane of rapidity and azimuthal angle. The ensemble average over all jets in an inclusive jet sample is measured and the results are presented as a function of transverse momentum of the inclusive jets, in different regions of Delta-R and for different transverse momentum requirements for the neighboring jets. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider in pp-bar collisions at sqrt(s)=1.96 The results are well described by a perturbative QCD calculation in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects. From these results, we extract the strong coupling and test the QCD predictions for its running over a range of momentum transfers of 50-400 GeV.Comment: 10 pages, 3 figures, 3 tables; v2 as published in Phys. Lett.

    Search for single production of scalar leptoquarks in proton-proton collisions at root s=8 TeV

    Get PDF
    Correction DOI:10.1103/PhysRevD.95.039906Peer reviewe

    Search for pair-produced vectorlike B quarks in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for third-generation scalar leptoquarks in the tτ channel in proton-proton collisions at √s=8 TeV

    Get PDF
    A search for pair production of third-generation scalar leptoquarks decaying to top quark and τ lepton pairs is presented using proton-proton collision data at a center-of-mass energy of s = 8 s√=8 TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 fb −1 . The search is performed using events that contain an electron or a muon, a hadronically decaying τ lepton, and two or more jets. The observations are found to be consistent with the standard model predictions. Assuming that all leptoquarks decay to a top quark and a τ lepton, the existence of pair produced, charge −1 / 3, third-generation leptoquarks up to a mass of 685 GeV is excluded at 95% confidence level. This result constitutes the first direct limit for leptoquarks decaying into a top quark and a τ lepton, and may also be applied directly to the pair production of bottom squarks decaying predominantly via the R-parity violating coupling λ 333 ′

    Search for W ' -> tb in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for a Higgs boson decaying into γ*γ→ℓℓγ with low dilepton mass in pp collisions at √s=8 TeV

    Get PDF
    A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair ( ℓℓγ ). The analysis is performed using proton–proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb −1 . The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 12
    corecore