74 research outputs found
Large Language Models Are Also Good Prototypical Commonsense Reasoners
Commonsense reasoning is a pivotal skill for large language models, yet it
presents persistent challenges in specific tasks requiring this competence.
Traditional fine-tuning approaches can be resource-intensive and potentially
compromise a model's generalization capacity. Furthermore, state-of-the-art
language models like GPT-3.5 and Claude are primarily accessible through API
calls, which makes fine-tuning models challenging. To address these challenges,
we draw inspiration from the outputs of large models for tailored tasks and
semi-automatically developed a set of novel prompts from several perspectives,
including task-relevance, supportive evidence generation (e.g. chain-of-thought
and knowledge), diverse path decoding to aid the model. Experimental results on
ProtoQA dataset demonstrate that with better designed prompts we can achieve
the new state-of-art(SOTA) on the ProtoQA leaderboard, improving the Max
Answer@1 score by 8%, Max Incorrect@1 score by 4% (breakthrough 50% for the
first time) compared to the previous SOTA model and achieved an improvement on
StrategyQA and CommonsenseQA2.0 (3% and 1%, respectively). Furthermore, with
the generated Chain-of-Thought and knowledge, we can improve the
interpretability of the model while also surpassing the previous SOTA models.
We hope that our work can provide insight for the NLP community to develop
better prompts and explore the potential of large language models for more
complex reasoning tasks
Curcumin suppresses leukemia cell proliferation by downregulation of P13K/AKT/mTOR signalling pathway
Purpose: To investigate the effect of curcumin ester on the proliferation of leukemia cell lines in vitro.
Methods: Changes in WEHI-3 and THP 1 cell viabilities were measured using Cell Counting Kit 8 (CCK 8). Analysis of cell cycle and determination of apoptosis were carried out using propidium iodide and Annexin V fluorescein isothiocyanate staining. Transmission electron microscopy was used for observing the presence of apoptotic features in cells.
Results: Treatment with curcumin ester for 72 h caused significant reduction in the proliferation of WEHI-3 and THP 1 cells. Curcumin ester, at a dose of 50 µM, decreased the proliferations of WEHI-3 and THP 1 cells to 28 and 32 %, respectively. On exposure to curcumin ester for 72 h, cell cycle in WEHI-3 cells was arrested in G1/G0 phase. Curcumin ester at doses of 25, 30 and 50 µM enhanced apoptosis in WEHI-3 cells to 46, 58 and 64 %, respectively. Curcumin ester suppressed the levels of phosphoinositide 3 kinase (PI3K), protein kinase B (AKT) and mechanistic target of rapamycin (mTOR) protein and mRNA in WEHI-3 cells. In curcumin ester-treated WEHI-3 cells, the presence of apop¬totic bodies increased significantly and concentration-dependently.
Conclusion: These results demonstrate that curcumin ester inhibits leukemia cell proliferation by inducing apoptosis and arresting cell cycle in G1/G0 phase, probably via suppression of PI3K, AKT and mTOR, and promotion of PTEN. Thus, curcumin ester has potentials for use in the development of an effective treatment strategy for leukemia
Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance
The linear positive magnetoresistance (LPMR) is a widely observed phenomenon
in topological materials, which is promising for potential applications on
topological spintronics. However, its mechanism remains ambiguous yet and the
effect is thus uncontrollable. Here, we report a quantitative scaling model
that correlates the LPMR with the Berry curvature, based on a ferromagnetic
Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 Kelvin and 9
Tesla, among known magnetic topological semimetals. In this system, masses of
Weyl nodes existing near the Fermi level, revealed by theoretical calculations,
serve as Berry-curvature monopoles and low-effective-mass carriers. Based on
the Weyl picture, we propose a relation , with B being the applied magnetic field and the average Berry curvature near the Fermi surface, and further
introduce temperature factor to both MR/B slope (MR per unit field) and
anomalous Hall conductivity, which establishes the connection between the model
and experimental measurements. A clear picture of the linearly slowing down of
carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the
k-space Berry curvature and real-space magnetic field. Our study not only
provides an experimental evidence of Berry curvature induced LPMR for the first
time, but also promotes the common understanding and functional designing of
the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic
sensing or information storage
Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2
The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals
(vdW) materials holds promises for novel spintronic devices with exceptional
performances. However, in order to utilize 2D vdW magnets for building
spintronic nanodevices such as magnetic memories, key challenges remain in
terms of effectively switching the magnetization from one state to the other
electrically. Here, we devise a bilayer structure of Fe3GeTe2/Pt, in which the
magnetization of few-layered Fe3GeTe2 can be effectively switched by the
spin-orbit torques (SOTs) originated from the current flowing in the Pt layer.
The effective magnetic fields corresponding to the SOTs are further
quantitatively characterized using harmonic measurements. Our demonstration of
the SOT-driven magnetization switching in a 2D vdW magnet could pave the way
for implementing low-dimensional materials in the next-generation spintronic
applications
Thyroid MALT lymphoma: self-harm to gain potential T-cell help.
Funder: CUH | Addenbrooke’s Charitable Trust, Cambridge University Hospitals (Addenbrooke’s Charitable Trust, Cambridge University Hospitals NHS Foundation Trust); doi: https://doi.org/10.13039/501100002927Funder: Pathological Society of Great Britain and Ireland; doi: https://doi.org/10.13039/501100000672The development of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by chronic inflammatory responses and acquired genetic changes. To investigate its genetic bases, we performed targeted sequencing of 93 genes in 131 MALT lymphomas including 76 from the thyroid. We found frequent deleterious mutations of TET2 (86%), CD274 (53%), TNFRSF14 (53%), and TNFAIP3 (30%) in thyroid MALT lymphoma. CD274 was also frequently deleted, together with mutation seen in 68% of cases. There was a significant association between CD274 mutation/deletion and TNFRSF14 mutation (p = 0.001). CD274 (PD-L1) and TNFRSF14 are ligands for the co-inhibitory receptor PD1 and BTLA on T-helper cells, respectively, their inactivation may free T-cell activities, promoting their help to malignant B-cells. In support of this, both the proportion of activated T-cells (CD4+CD69+/CD4+) within the proximity of malignant B-cells, and the level of transformed blasts were significantly higher in cases with CD274/TNFRSF14 genetic abnormalities than those without these changes. Both CD274 and TNFRSF14 genetic changes were significantly associated with Hashimoto's thyroiditis (p = 0.01, p = 0.04, respectively), and CD274 mutation/deletion additionally associated with increased erythrocyte sedimentation rate (p = 0.0001). In conclusion, CD274/TNFRSF14 inactivation in thyroid MALT lymphoma B-cells may deregulate their interaction with T-cells, promoting co-stimulations and impairing peripheral tolerance.Bloodwise
the Kay Kendall Leukaemia Fund
the Addenbrooke’s Charitable Trust
Pathological Society of Great Britain and Irelan
Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids
Liver is the primary acting site of insulin. In this study, we developed innovative nanoparticles for oral and liver-targeted delivery of insulin by using enterohepatic circulation of bile acids. The nanoparticles were produced from cholic acid and quaternary ammonium modified chitosan derivative and hydroxypropyl methylcellulose phthalate (HPMCP). The nanoparticles had a diameter of 239 nm, an insulin loading efficiency of 90.9%, and a loading capacity of 18.2%. Cell culture studies revealed that the cholic acid groups effectively enhanced the transport of the nanoparticles through Caco-2 cell monolayer and greatly increased the absorption of the nanoparticles in HepG-2 cells via bile acid transporter mechanism. Ex vivo fluorescence images of ileum section, gastrointestinal tract, and liver demonstrated that the HPMCP increased the mucoadhesion of the nanoparticles in ileum, and the cholic acid groups facilitated the absorptions of the nanoparticles in both ileum and liver by use of bile acid transporters via enterohepatic circulation of bile acids. The therapy for diabetic mice displayed that the oral nanoparticle group could maintain hypoglycemic effect for more than 24 h and its pharmacological availability was about 30% compared with the insulin injection group. For the first time, this study demonstrates that using enterohepatic circulation of bile acids is an effective strategy for oral delivery of insulin
Parallel Distribution Matcher Base on CCDM for Probabilistic Amplitude Shaping in Coherent Optical Fiber Communication
As a typical high-order modulation format optimization technology, constellation probability shaping enhances generalized mutual information (GMI) by optimizing the probability distribution of each constellation point of the signal. It can improve the transmission capacity of the same order M Quadrature Amplitude Modulation (QAM) signal under the condition of limited average transmission power, and further narrow the gap with the Shannon limit capacity. The distribution matcher is a key part of constellation probability shaping since it not only ensures the one-to-one mapping of input and output sequences but also realizes the function of probability shaping. The constant composition distribution matcher (CCDM) structure is a widely utilized distribution matcher in the current probability shaping technology. Based on CCDM, a parallel distribution matcher scheme is proposed in this paper. It has a lower rate loss than CCDM for short output lengths (n is less than 100). Block lengths can be reduced by up to 30% with the same rate loss. When the GMI is the same as for the probability shaping (PS) 64QAM signal using CCDM, the OSNR required by the PS-64QAM signal using this scheme can be enhanced by 0.12dB, the block length can be reduced by 40%, and the transmission distance in a standard single-mode fiber can be slightly extended
Amorphous In–Ga–Zn–O Powder with High Gas Selectivity towards Wide Range Concentration of C2H5OH
Amorphous indium gallium zinc oxide (a-IGZO) powder was prepared by typical solution-based process and post-annealing process. The sample was used as sensor for detecting C2H5OH, H2, and CO. Gas-sensing performance was found to be highly sensitive to C2H5OH gas in a wide range of concentration (0.5–1250 ppm) with the response of 2.0 towards 0.5 ppm and 89.2 towards 1250 ppm. Obvious difference of response towards C2H5OH, H2, and CO was found that the response e.g., was 33.20, 6.64, and 2.84 respectively at the concentration of 200 ppm. The response time and recovery time of was 32 s and 14 s respectively towards 200 ppm concentration of C2H5OH gas under heating voltage of 6.5 V
- …