536 research outputs found

    Microbial fuel cells: a green and alternative source for bioenergy production

    Get PDF
    Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)

    Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database.

    Get PDF
    BACKGROUND: Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. METHODS: To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. RESULTS: Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally, we derived a candidate set of 24 novel genetic modifiers, including histone deacetylase 3 (HDAC3), metabotropic glutamate receptor 1 (GRM1), CDK5 regulatory subunit 2 (CDK5R2), and coactivator 1ß of the peroxisome proliferator-activated receptor gamma (PPARGC1B). CONCLUSIONS: The results of our study give us an intriguing picture of the molecular complexity of HD. Our analyses can be seen as a first step towards a comprehensive list of biological processes, molecular functions, and pathways involved in HD, and may provide a basis for the development of more holistic disease models and new therapeutics

    Opportunities, challenges and systems requirements for developing post-abortion family planning services: Perceptions of service stakeholders in China

    Get PDF
    Post-abortion family planning (PAFP) has been proposed as a key strategy to decrease unintended pregnancy and repeat induced abortions. However, the accessibility and quality of PAFP services remain a challenge in many countries including China where more than 10 million unintended pregnancies occur each year. Most of these unwanted pregnancies end in repeated induced abortions. This paper aims to explore service providers’ perceptions of the current situation regarding family planning and abortion service needs, provision, utilization, and the feasibility and acceptability of high quality PAFP in the future. Qualitative methods, including in-depth interviews and focus group discussions, were used with family planning policy makers, health managers, and service providers. Three provinces—Zhejiang, Hubei and Yunnan—were purposively selected, representing high, medium and relatively undeveloped areas of China. A total of fifty-three in-depth interviews and ten focus-group discussions were conducted and analysed thematically. Increased numbers of abortions among young, unmarried women were perceived as a major reason for high numbers of abortions. Participants attributed this to increasing socio-cultural acceptability of premarital sex, and simultaneously, lack of understanding or awareness of contraception among young people. The majority of service stakeholders acknowledged that free family planning services were neither targeted at, nor accessible to unmarried people. The extent of PAFP provision is variable and limited. However, service providers expressed willingness and enthusiasm towards providing PAFP services in the future. Three main considerations were expressed regarding the feasibility of developing and implementing PAFP services: policy support, human resources, and financial resources. The study indicated that key service stakeholders show demand for and perceive considerable opportunities to develop PAFP in China. However, changes are needed to enable the systematic development of high quality PAFP, including actively targeting young and unmarried people in service provision, obtaining policy support and increasing the investment of human and financial resources

    Pure angular momentum generator using a ring resonator

    Get PDF
    Author name used in this publication: X. M. ZhangAuthor name used in this publication: D. P. Tsai2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Impact of the Herbal Medicine Sophora flavescens on the Oral Pharmacokinetics of Indinavir in Rats: The Involvement of CYP3A and P-Glycoprotein

    Get PDF
    Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%–83% decrease in AUC0-∞ and 38%–78% reduction in Cmax. The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products

    How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?

    Get PDF
    Bacteria adhere to virtually all natural and synthetic surfaces [1,2]. Although there are a number of different reasons as to why bacteria adhere to a surface, the summarizing answer is brief: ‘‘Adhesion to a surface is a survival mechanism for bacteria’’. Nutrients in aqueous environments have the tendency to accumulate at surfaces [1,3], giving adhering bacteria a benefit over free floating, so-called planktonic ones. This is why mountain creeks may contain crystal clear, drinkable water, while stepping stones underneath the water may be covered with a slippery film of adhering microbes. In the oral cavity, adhesion to dental hard and soft tissues is life-saving to the organisms, because microbes that do not manage to adhere and remain planktonic in saliva are swallowed with an almost certain death in the gastrointestinal tract. Bacterial adhesion is generally recognized as the first step in biofilm formation, and for the human host, the ability of

    The state-of-the-art determination of urinary nucleosides using chromatographic techniques “hyphenated” with advanced bioinformatic methods

    Get PDF
    Over the last decade metabolomics has gained increasing popularity and significance in life sciences. Together with genomics, transcriptomics and proteomics, metabolomics provides additional information on specific reactions occurring in humans, allowing us to understand some of the metabolic pathways in pathological processes. Abnormal levels of such metabolites as nucleosides in the urine of cancer patients (abnormal in relation to the levels observed in healthy volunteers) seem to be an original potential diagnostic marker of carcinogenesis. However, the expectations regarding the diagnostic value of nucleosides may only be justified once an appropriate analytical procedure has been applied for their determination. The achievement of good specificity, sensitivity and reproducibility of the analysis depends on the right choice of the phases (e.g. sample pretreatment procedure), the analytical technique and the bioinformatic approach. Improving the techniques and methods applied implies greater interest in exploration of reliable diagnostic markers. This review covers the last 11 years of determination of urinary nucleosides conducted with the use of high-performance liquid chromatography in conjunction with various types of detection, sample pretreatment methods as well as bioinformatic data processing procedures
    corecore