130 research outputs found
Recommended from our members
Search for sources of astrophysical neutrinos using seven years of icecube cascade events
Low-background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as ∼1 TeV. Previously we showed that, even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions - especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this data set is particularly well suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment to date. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy
Recommended from our members
A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube
We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and 1 repeating FRB. The first improves on a previous IceCube analysis - searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV - by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search; therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope
Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda)
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/
The attached file is the published version of the article
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
PGE2 Induces IL-6 in Orbital Fibroblasts through EP2 Receptors and Increased Gene Promoter Activity: Implications to Thyroid-Associated Ophthalmopathy
BACKGROUND: IL-6 plays an important role in the pathogenesis of Graves' disease and its orbital component, thyroid-associated ophthalmopathy (TAO). Orbital tissues become inflamed in TAO, a process in which prostanoids have been implicated. Orbital fibroblasts both generate and respond to PGE(2), underlying the inflammatory phenotype of these cells. METHODOLOGY/PRINCIPAL FINDINGS: Using cultured orbital and dermal fibroblasts, we characterized the effects of PGE(2) on IL-6 expression. We found that the prostanoid provokes substantially greater cytokine synthesis in orbital fibroblasts, effects that are mediated through cell-surface EP(2) receptors and increased steady-state IL-6 mRNA levels. The pre-translational up-regulation of IL-6 results from increased gene promoter activity and can be reproduced with the PKA agonist, Sp-cAMP and blocked by interrupting the PKA pathway. PGE(2)-induced production of cAMP in orbital fibroblasts was far greater than that in dermal fibroblasts, resulting from higher levels of adenylate cyclase. PGE(2) provokes CREB phosphorylation, increases the pCREB/CREB ratio, and initiates nuclear localization of the pCREB/CREB binding protein/p300 complex (CBP) preferentially in orbital fibroblasts. Transfection with siRNAs targeting either CREB or CBP blunts the induction of IL-6 gene expression. PGE(2) promotes the binding of pCREB to its target DNA sequence which is substantially greater in orbital fibroblasts. CONCLUSION/SIGNIFICANCE: These results identify the mechanism underlying the exaggerated induction of IL-6 in orbital fibroblasts and tie together two proinflammatory pathways involved in the pathogenesis of TAO. Moreover, they might therefore define an attractive therapeutic target for the treatment of TAO
ACE Inhibition and Endothelial Function: Main Findings of PERFECT, a Sub-Study of the EUROPA Trial
Background: ACE inhibition results in secondary prevention of coronary artery disease (CAD) through different mechanisms including improvement of endothelial dysfunction. The Perindopril-Function of the Endothelium in Coronary artery disease Trial (PERFECT) evaluated whether long-term administration of perindopril improves endothelial dysfunction.
Methods: PERFECT is a 3-year double blind randomised placebo controlled trial to determine the effect of perindopril 8 mg once daily on brachial artery endothelial function in patients with stable CAD without clinical heart failure. Endothelial function in response to ischaemia was assessed using ultrasound. Primary endpoint was difference in flow-mediated vasodilatation (FMD) assessed at 36 months.
Results: In 20 centers, 333 patients randomly received perindopril or matching placebo. Ischemia-induced FMD was 2.7% (SD 2.6). In the perindopril group FMD went from 2.6% at baseline to 3.3% at 36 months and in the placebo group from 2.8 to 3.0%. Change in FMD after 36 month treatment was 0.55% (95% confidence interval −0.36, 1.47; p = 0.23) higher in perindopril than in placebo group. The rate of change in FMD per 6 months was 0.14% (SE 0.05, p = 0.02) in perindopril and 0.02% (SE 0.05, p = 0.74) in placebo group (0.12% difference in rate of change p = 0.07).
Conclusion: Perindopril resulted in a modest, albeit not statistically significant, improvement in FMD
Recommended from our members
A Search for IceCube Events in the Direction of ANITA Neutrino Candidates
During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy upgoing air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here we test the hypothesis that these events are astrophysical in origin, possibly caused by a point source in the reconstructed direction. Given that any ultra-high-energy tau neutrino flux traversing the Earth should be accompanied by a secondary flux in the TeV-PeV range, we search for these secondary counterparts in 7 yr of IceCube data using three complementary approaches. In the absence of any significant detection, we set upper limits on the neutrino flux from potential point sources. We compare these limits to ANITA's sensitivity in the same direction and show that an astrophysical explanation of these anomalous events under standard model assumptions is severely constrained regardless of source spectrum
Pre-operative pulmonary assessment for patients with hip fracture
Hip fracture is a common injury among the elderly. Although patients who receive hip fracture surgery carry the best functional recovery compared to other treatment modalities, the presence of postoperative pulmonary complications, such as atelectasis, pneumonia, and pulmonary thromboembolism, may contribute to increased length of hospital stay, perioperative morbidity, and mortality. This review aims to provide evidence-based recommendations for preoperative assessment and perioperative strategies to reduce the risk of pulmonary complications after hip fracture surgery. Clinical assessment and basic laboratory results are sufficient to stratify the risk of postoperative pulmonary complications. Well-documented risk factors for pulmonary complications include advanced age, poor general health status, current infections, pre-existing cardiopulmonary diseases, hypoalbuminemia, and impaired renal function. Apart from optimizing the patient's medical conditions, interventions such as lung expansion maneuvers and thromboprophylaxis have been proven to be effective in reducing the risk of pulmonary complications after hip fracture surgery
Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors
Papers on atmospheric and astrophysical diffuse neutrino searches of all flavors submitted to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague) by the IceCube Collaboration
- …
