85 research outputs found

    The Force Cone Method Applied to Explain Hidden Whirls in Tribology

    Get PDF
    In tribologically loaded materials, folding instabilities and vortices lead to the formation of complex internal structures. This is true for geological as well as nanoscopic contacts. Classically, these structures have been described by Kelvin–Helmholtz instabilities or shear localization. We here introduce an alternative explanation based on an intuitive approach referred to as the force cone method. It is considered how whirls are situated near forces acting on a free surface of an elastic or elastoplastic solid. The force cone results are supplemented by finite element simulations. Depending on the direction of the acting force, one or two whirls are predicted by the simplified force cone method. In 3D, there is always a ring shaped whirl present. These modelling findings were tested in simple model experiments. The results qualitatively match the predictions and whirl formation was found. The force cone method and the experiments may seem trivial, but they are an ideal tool to intuitively understand the presence of whirls within a solid under a tribological load. The position of these whirls was found at the predicted places and the force cone method allows a direct approach to understand the complex processes in the otherwise buried interfaces of tribologically loaded materials

    MetaCook: FAIR Vocabularies Cookbook

    Get PDF
    One of the prerequisites for FAIR data publication is the use of FAIR vocabularies. Currently, tools for the collaborative composition of such vocabularies are missing. For this reason, a universal manual and software for user-friendly vocabulary assembly is being composed in the HMC-funded MetaCook project. The project includes 4 separate test cases from 4 labs across KIT and Hereon, which will help strengthen the software\u27s universality and applicability to various domains. The components described in MetaCook will be implemented in the form of multiple software tools. The first one, a Python-based web application called VocPopuli, is the entry point for domain experts. The software, whose first version is being developed at the time of writing, enables the collaborative definition, and editing of metadata terms. Additionally, it annotates each term, as well as the entire vocabulary, with the help of the PROV Data Model (PROV-DM) - a schema used to describe the provenance of a given object. Finally, it assigns a unique ID to each term in the vocabulary, as well as a hash-based ID the vocabulary itself. The second software tool will facilitate the transformation of the vocabularies developed with the help of VocPopuli into ontologies. It will handle two distinct use cases – the from-scratch conversion of vocabularies into ontologies, and the augmentation of existing ontologies with the terms from a given thesaurus. Both software tools will be used by two semi-overlapping user groups: domain experts will input, edit, and discuss vocabulary terms in their area of interest, while vocabulary and ontology administrators will oversee the vocabulary creation, and ontology transformation. Both the controlled vocabularies and the corresponding ontologies offer the possibility to enrich data documented in Electronic Laboratory Notebooks (ELNs). As the simplest solution, terms used within the ELN are linked to the IDs of the related vocabulary and ontology for an unambiguous definition. Additionally, an export of the defined schemes can be used to automatically create a structured form in the ELNs for documenting the described processes. The output from the developed tools will be exemplarily integrated into the ELNs Herbie and Kadi4Mat

    Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody

    Get PDF
    BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111)Indium ((111)In) via bifunctional DTPA ( = (111)In-LIBS/(111)In-control). Autoradiography after incubation with (111)In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2), 4010 ± 630 DLU/mm(2) and 4520 ± 293 DLU/mm(2)) produced a significantly higher ligand uptake compared to (111)In-control (2101 ± 76 DLU/mm(2), 1181 ± 96 DLU/mm(2) and 1866 ± 246 DLU/mm(2)) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111)In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2) vs. 17390 ± 7470 DLU/mm(2); P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111)In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111)In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01). CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111)In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore