431 research outputs found

    Effective action and interaction energy of coupled quantum dots

    Full text link
    We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also explicitly obtain the functional dependence of the interaction energy and peak-splitting on the gate voltage controlling tunneling between the dots and their charging energies. Our results are in good agreement with recent experimental results, from which we obtain the Luttinger interaction parameter K=0.74K=0.74.Comment: 5 pgs,latex,3 figs,revised version to be publshed in Phys.Rev.

    Coulomb correlations effects on localized charge relaxation in the coupled quantum dots

    Full text link
    We analyzed localized charge time evolution in the system of two interacting quantum dots (QD) (artificial molecule) coupled with the continuous spectrum states. We demonstrated that Coulomb interaction modifies relaxation rates and is responsible for non-monotonic time evolution of the localized charge. We suggested new mechanism of this non-monotonic charge time evolution connected with charge redistribution between different relaxation channels in each QD.Comment: 10 pages, 10 figure

    Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule

    Full text link
    We study the Aharonov-Bohm effect in a coupled 2×\times2 quantum dot array with two-terminals. A striking conductance dip arising from the Fano interference is found as the energy levels of the intermediate dots are mismatched, which is lifted in the presence of a magnetic flux. A novel five peak structure is observed in the conductance for large mismatch. The Aharonov-Bohm evolution of the linear conductance strongly depends on the configuration of dot levels and interdot and dot-lead coupling strengths. In addition, the magnetic flux and asymmetry between dot-lead couplings can induce the splitting and combination of the conductance peak(s).Comment: 15 pages, 7 figures, Revtex, to be published in Phys. Rev.

    Genetic dissection of quantitative and qualitative traits using a minimum set of barley Recombinant Chromosome Substitution Lines

    Get PDF
    BACKGROUND:Exploring the natural occurring genetic variation of the wild barley genepool has become a major target of barley crop breeding programmes aiming to increase crop productivity and sustainability in global climate change scenarios. However this diversity remains unexploited and effective approaches are required to investigate the benefits that unadapted genomes could bring to crop improved resilience. In the present study, a set of Recombinant Chromosome Substitution Lines (RCSLs) derived from an elite barley cultivar 'Harrington' as the recurrent parent, and a wild barley accession from the Fertile Crescent 'Caesarea 26-24', as the donor parent (Matus et al. Genome 46:1010-23, 2003) have been utilised in field and controlled conditions to examine the contribution of wild barley genome as a source of novel allelic variation for the cultivated barley genepool. METHODS:Twenty-eight RCSLs which were selected to represent the entire genome of the wild barley accession, were genotyped using the 9 K iSelect SNP markers (Comadran et al. Nat Genet 44:1388-92, 2012) and phenotyped for a range of morphological, developmental and agronomic traits in 2 years using a rain-out shelter with four replicates and three water treatments. Data were analysed for marker traits associations using a mixed model approach. RESULTS:We identified lines that differ significantly from the elite parent for both qualitative and quantitative traits across growing seasons and water regimes. The detailed genotypic characterisation of the lines for over 1800 polymorphic SNP markers and the design of a mixed model analysis identified chromosomal regions associated with yield related traits where the wild barley allele had a positive response increasing grain weight and size. In addition, variation for qualitative characters, such as the presence of cuticle waxes on the developing spikes, was associated with the wild barley introgressions. Despite the coarse location of the QTLs, interesting candidate genes for the major marker-trait associations were identified using the recently released barley genome assembly. CONCLUSION:This study has highlighted the role of exotic germplasm to contribute novel allelic variation by using an optimised experimental approach focused on an exotic genetic library. The results obtained constitute a step forward to the development of more tolerant and resilient varieties.Carla De la Fuente Cantó, Joanne Russell, Christine A. Hackett, Allan Booth, Siobhan Dancey, Timothy S. George and Robbie Waug

    Renormalization approach for quantum-dot structures under strong alternating fields

    Full text link
    We develop a renormalization method for calculating the electronic structure of single and double quantum dots under intense ac fields. The nanostructures are emulated by lattice models with a clear continuum limit of the effective-mass and single-particle approximations. The coupling to the ac field is treated non-perturbatively by means of the Floquet Hamiltonian. The renormalization approach allows the study of dressed states of the nanoscopic system with realistic geometries as well arbitrary strong ac fields. We give examples of a single quantum dot, emphasizing the analysis of the effective-mass limit for lattice models, and double-dot structures, where we discuss the limit of the well used two-level approximation.Comment: 6 pages, 7 figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore