118 research outputs found
Everolimus and long acting octreotide as a volume reducing treatment of polycystic livers (ELATE): study protocol for a randomized controlled trial
Contains fulltext :
97893.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Polycystic liver disease (PLD) is defined as having more than 20 liver cysts and can present as a severe and disabling condition. Most symptoms are caused by the mass effect of the liver size and include abdominal pain and distension. The somatostatin analogues octreotide and lanreotide have proven to reduce polycystic liver volume. mTOR inhibitors such as everolimus inhibit cell proliferation and might thereby reduce growth of liver cysts. This trial aims to assess the benefit of combination therapy of everolimus and octreotide compared to octreotide monotherapy. In this study we present the structure of the trial and the characteristics of the included patients. METHODS/DESIGN: This is a randomized open-label clinical trial comparing the effect of 12 months of everolimus and octreotide to octreotide monotherapy in PLD patients. Primary outcome is change in liver volume determined by CT-volumetry. Secondary outcomes are changes in abdominal symptoms and quality of life. Moreover, safety and tolerability of the drugs will be assessed. DISCUSSION: This trial will compare the relative efficacy of combination therapy with octreotide and everolimus to octreotide monotherapy. Since they apply to different pathways of cystogenesis we expect that combining octreotide and everolimus will result in a cumulative reduction of polycystic liver volume. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT01157858
Higgs Boson Masses in the Complex NMSSM at One-Loop Level
The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM)
with a Higgs sector containing five neutral and two charged Higgs bosons allows
for a rich phenomenology. In addition, the plethora of parameters provides many
sources of CP violation. In contrast to the Minimal Supersymmetric Extension,
CP violation in the Higgs sector is already possible at tree-level. For a
reliable understanding and interpretation of the experimental results of the
Higgs boson search, and for a proper distinction of Higgs sectors provided by
the Standard Model or possible extensions, the Higgs boson masses have to be
known as precisely as possible including higher-order corrections. In this
paper we calculate the one-loop corrections to the neutral Higgs boson masses
in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed
renormalization scheme based on on-shell and conditions. We study
various scenarios where we allow for tree-level CP-violating phases in the
Higgs sector and where we also study radiatively induced CP violation due to a
non-vanishing phase of the trilinear coupling in the stop sector. The
effects on the Higgs boson phenomenology are found to be significant. We
furthermore estimate the theoretical error due to unknown higher-order
corrections by both varying the renormalization scheme of the top and bottom
quark masses and by adopting different renormalization scales. The residual
theoretical error can be estimated to about 10%
Predictors and outcomes in primary depression care (POKAL) – a research training group develops an innovative approach to collaborative care
BACKGROUND: The interdisciplinary research training group (POKAL) aims to improve care for patients with depression and multimorbidity in primary care. POKAL includes nine projects within the framework of the Chronic Care Model (CCM). In addition, POKAL will train young (mental) health professionals in research competences within primary care settings. POKAL will address specific challenges in diagnosis (reliability of diagnosis, ignoring suicidal risks), in treatment (insufficient patient involvement, highly fragmented care and inappropriate long-time anti-depressive medication) and in implementation of innovations (insufficient guideline adherence, use of irrelevant patient outcomes, ignoring relevant context factors) in primary depression care. METHODS: In 2021 POKAL started with a first group of 16 trainees in general practice (GPs), pharmacy, psychology, public health, informatics, etc. The program is scheduled for at least 6 years, so a second group of trainees starting in 2024 will also have three years of research-time. Experienced principal investigators (PIs) supervise all trainees in their specific projects. All projects refer to the CCM and focus on the diagnostic, therapeutic, and implementation challenges. RESULTS: The first cohort of the POKAL research training group will develop and test new depression-specific diagnostics (hermeneutical strategies, predicting models, screening for suicidal ideation), treatment (primary-care based psycho-education, modulating factors in depression monitoring, strategies of de-prescribing) and implementation in primary care (guideline implementation, use of patient-assessed data, identification of relevant context factors). Based on those results the second cohort of trainees and their PIs will run two major trials to proof innovations in primary care-based a) diagnostics and b) treatment for depression. CONCLUSION: The research and training programme POKAL aims to provide appropriate approaches for depression diagnosis and treatment in primary care
The Complete Genome Sequence of Mycoplasma bovis Strain Hubei-1
Infection by Mycoplasma bovis (M. bovis) can induce diseases, such as pneumonia and otitis media in young calves and mastitis and arthritis in older animals. Here, we report the finished and annotated genome sequence of M. bovis strain Hubei-1, a strain isolated in 2008 that caused calf pneumonia on a Chinese farm. The genome of M. bovis strain Hubei-1 contains a single circular chromosome of 953,114 bp with a 29.37% GC content. We identified 803 open reading frames (ORFs) that occupy 89.5% of the genome. While 34 ORFs were Hubei-1 specific, 662 ORFs had orthologs in the M. bovis type strain PG45 genome. Genome analysis validated lateral gene transfer between M. bovis and the Mycoplasma mycoides subspecies mycoides, while phylogenetic analysis found that the closest M. bovis neighbor is Mycoplasma agalactiae. Glycerol may be the main carbon and energy source of M. bovis, and most of the biosynthesis pathways were incomplete. We report that 47 lipoproteins, 12 extracellular proteins and 18 transmembrane proteins are phase-variable and may help M. bovis escape the immune response. Besides lipoproteins and phase-variable proteins, genomic analysis found two possible pathogenicity islands, which consist of four genes and 11 genes each, and several other virulence factors including hemolysin, lipoate protein ligase, dihydrolipoamide dehydrogenase, extracellular cysteine protease and 5′-nucleotidase
The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity
Estimating population birth rates of zooplankton when rates of egg deposition and hatching are periodic
I present a general method of computing finite birth and death rates of natural zooplankton populations from changes in the age distribution of eggs and changes in population size. The method is applicable to cases in which eggs hatch periodically owing to variable rates of oviposition. When morphological criteria are used to determine the age distribution of eggs at the beginning and end of a sampling interval, egg mortality can be incorporated in estimates of population birth rate. I raised laboratory populations of Asplanchna priodonta , a common planktonic rotifer, in semicontinuous culture to evaluate my method of computing finite birth rate. The Asplanchna population became synchronized to a daily addition of food but grew by the same amount each day once steady state was achieved. The steady-state rate of growth, which can be computed from the volume-specific dilution rate of the culture, was consistent with the finite birth rate predicted from the population's egg ratio and egg age distribution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47764/1/442_2004_Article_BF00410359.pd
Chemokines in rheumatoid arthritis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46938/1/281_2004_Article_BF00832002.pd
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …