293 research outputs found

    Probabilistic segmentation of volume data for visualization using SOM-PNN classifier

    Get PDF
    We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.published_or_final_versio

    Review of The Electronic Transaction Ordinance: Can The Personal Identification Number Replace The Digital Signature?

    Get PDF
    In a recent consultation document, the Information Technology and Broadcasting Bureau proposed that personal identification numbers (PINs) be accepted as a form of signature for the purposes of the Electronic Transactions Ordinance (ETO) (Cap 553). This article explains why this proposal is fundamentally flawed. The article identifies three basic requirements for a signature and examines whether they are satisfied by digital signatures and PINs. It concludes that while a digital signature has built into it all the elements necessary for compliance with the requirements, a PIN can only be used for the purpose of authorisation and cannot be elevated to the status of a signature as required by the ETO.published_or_final_versio

    Digital evidence search kit

    Get PDF
    With the rapid development of electronic commerce and Internet technology, cyber crimes have become more and more common. There is a great need for automated software systems that can assist law enforcement agencies in cyber crime evidence collection. This paper describes a cyber crime evidence collection tool called DESK (Digital Evidence Search Kit), which is the product of several years of cumulative efforts of our Center together with the Hong Kong Police Force and several other law enforcement agencies of the Hong Kong Special Administrative Region. We will use DESK to illustrate some of the desirable features of an effective cyber crime evidence collection tool. © 2005 IEEE.published_or_final_versio

    Separable and anonymous identity-based key issuing

    Get PDF
    In identity-based (ID-based) cryptosystems, a local registration authority (LRA) is responsible for authentication of users while the key generation center (KGC) is responsible for computing and sending the private keys to users and therefore, a secure channel is required. For privacy-oriented applications, it is important to keep in secret whether the private key corresponding to a certain identity has been requested. All of the existing ID-based key issuing schemes have not addressed this anonymity issue. Besides, the separation of duties of LRA and KGC has not been discussed as well. We propose a novel separable and anonymous ID-based key issuing scheme without secure channel. Our protocol supports the separation of duties between LRA and KGC. The private key computed by the KGC can be sent to the user in an encrypted form such that only the legitimate key requester authenticated by LRA can decrypt it, and any eavesdropper cannot know the identity corresponding to the secret key. © 2005 IEEE.published_or_final_versio

    Intrusion detection routers: Design, implementation and evaluation using an experimental testbed

    Get PDF
    In this paper, we present the design, the implementation details, and the evaluation results of an intrusion detection and defense system for distributed denial-of-service (DDoS) attack. The evaluation is conducted using an experimental testbed. The system, known as intrusion detection router (IDR), is deployed on network routers to perform online detection on any DDoS attack event, and then react with defense mechanisms to mitigate the attack. The testbed is built up by a cluster of sufficient number of Linux machines to mimic a portion of the Internet. Using the testbed, we conduct real experiments to evaluate the IDR system and demonstrate that IDR is effective in protecting the network from various DDoS attacks. © 2006 IEEE.published_or_final_versio

    DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling

    Get PDF
    Recent evidence from a comprehensive genome analysis and functional studies have revealed that FOXM1 is a crucial metastatic regulator that drives cancer progression. However, the regulatory mechanism by which FOXM1 exerts its metastatic functions in cancer cells remains obscure. Here, we report that DLX1 acts as a FOXM1 downstream target, exerting pro-metastatic function in ovarian cancers. Both FOXM1 isoforms (FOXM1B or FOXM1C) could transcriptionally upregulate DLX1 through two conserved binding sites, located at +61 to +69bp downstream (TFBS1) and -675 to -667bp upstream (TFBS2) of the DLX1 promoter, respectively. This regulation was further accentuated by the significant correlation between the nuclear expression of FOXM1 and DLX1 in high-grade serous ovarian cancers. Functionally, the ectopic expression of DLX1 promoted ovarian cancer cell growth, cell migration/invasion and intraperitoneal dissemination of ovarian cancer in mice, whereas small interfering RNA-mediated DLX1 knockdown in FOXM1-overexpressing ovarian cancer cells abrogated these oncogenic capacities. In contrast, depletion of FOXM1 by shRNAi only partially attenuated tumor growth and exerted almost no effect on cell migration/invasion and the intraperitoneal dissemination of DLX1-overexpressing ovarian cancer cells. Furthermore, the mechanistic studies showed that DLX1 positively modulates TGF- signaling by upregulating PAI-1 and JUNB through direct interaction with SMAD4 in the nucleus upon TGF-1 induction. Taken together, these data strongly suggest that DLX1 plays a pivotal role in FOXM1 signaling to promote cancer aggressiveness through intensifying TGF-/SMAD4 signaling in high-grade serous ovarian cancer cells.published_or_final_versio

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Search for a Light Sterile Neutrino at Daya Bay

    Get PDF
    published_or_final_versio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio
    corecore