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Intrusion Detection Routers: Design, Implementation
and Evaluation Using an Experimental Testbed

Eric Y. K. Chan, H. W. Chan, K. M. Chan, P. S. Chan, Samuel T. Chanson, M. H. Cheung, C. F. Chong,
K. P. Chow, Albert K. T. Hui, Lucas C. K. Hui, S. K. Ip, C. K. Lam, W. C. Lau, K. H. Pun, Y. F. Tsang,
W. W. Tsang, C. W. Tso, D. Y. Yeung, S. M. Yiu, K. Y. Yu, and Weihua Ju

Abstract—1In this paper, we present the design, the implementa-
tion details, and the evaluation results of an intrusion detection and
defense system for distributed denial-of-service (DDoS) attack. The
evaluation is conducted using an experimental testbed. The system,
known as intrusion detection router (IDR), is deployed on network
routers to perform online detection on any DDoS attack event, and
then react with defense mechanisms to mitigate the attack. The
testbed is built up by a cluster of sufficient number of Linux ma-
chines to mimic a portion of the Internet. Using the testbed, we
conduct real experiments to evaluate the IDR system and demon-
strate that IDR is effective in protecting the network from various
DDoS attacks.

Index Terms—Distributed denial-of-service (DDoS), intrusion
detection, routers, testbed.

I. INTRODUCTION
A. Background

In a distributed denial-of-service (DDoS) attack, a group of
well-organized and widely distributed zombies simultaneously
and continuously send a large-volume flood of packets to a
victim host or network. This overwhelms the victim who cannot
serve its legitimate clients. Usually, by the time the attack is
detected, there is not much a network administrator can do
except manually disconnect the victim from the Internet and
seek help from their upstream Internet service providers (ISPs).

Starting from February 2000 when the famous e-commerce
sites shutdown events were reported, DDoS attacks continue to
disturb the existing Internet infrastructure [32], [41]. With the
increasing numbers of system vulnerabilities that ease network
intrusion and more sophisticated DDoS attack tools publicly
available to script kiddies, the damaging effect of the attack is
not only increasing in monetary losses [12] but governments are
also aware of the threat of bringing down the critical informa-
tion infrastructure that can affect national security and loss of
life [13].
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B. Related Work

Different from the classical denial-of-service attack, DDoS
attack packets are characterized by its huge volume and the ab-
sence of packet content signature, except the possibly forged
source for hiding zombies’ real locations. Therefore, it is not
effective to apply rule-based pattern matching system to coun-
teract the attack. Moreover, applying ingress filtering [16] to
prevent packets with forged source Internet protocol (IP) ad-
dresses to be sent out cannot stop nonspoofed DDoS attack
traffic. Some researchers proposed to defense the DDoS attack
from the end-host perspective [6] that is only specific for some
attacks targeting on a particular network protocol.

Since routers are part of critical network components that
forward packets within the Internet, various researchers pro-
posed to tackle the problem at router level in recent years. The
techniques used in these approaches include the followings.
Packet-marking that overwrites the content of existing packet
header or modifies existing Internet protocols for defending
[42]. Tracing sources of attack, [5], [34], [39], [40] tries to
identify the sources of attack in order to stop it. Pushback
router [29] issues rate-limit request to its upstream routers for
traffic control upon detecting a DDoS attack. It provides an
infrastructure that is suitable to operate within an organization.
However, pushback request may not easily reach upstream
router through the congested link. This also punishes legitimate
traffic that shares the same path with attack traffic. DWARD
[31]is a typical example of a source-end detection router which
is usually deployed at the outgoing gateway of a subnet and
will try to detect outgoing attack packets. Other references
include [19], [23], [35], and [43]. There are many other works
in this area and we only mentioned the ones which are strongly
related to our work.

II. PROBLEM DEFINITION

DDoS attack is a complex problem due to its distributed na-
ture and the attack packets involved usually do not have con-
tent-specific signatures. It is not easy to derive an effective so-
lution. We first divide the problem into several subproblems.

A. Identify Attack and Victim

The first challenge in solving the DDoS attack problem is to
determine if there is any DDoS victim being attacked from the
traffic passing through a router. This problem introduces several
technical difficulties. It is not trivial how to locate a victim from
a sea of network traffic flow through a router within the Internet.
It is important to have this information available efficiently, ac-
curately, and in a scalable manner. In a backbone router that
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connects to Internet, the possible number of destination IPv4
addresses is in the order of magnitude of 232 and router links
can allow high-speed traffic with rates up to 10Gb/s for OC192
link. It is difficult to keep track of this amount of traffic statistics
per pair of source and destination addresses within any network
components. When a victim is identified, we need to determine
how much of traffic volume flow to the target victim should be
classified as suspicious.

B. Classify Legitimate and Attack Traffic

Once a potential victim is discovered, it is important to carry
out defense mechanisms to allow the victim host or network to
be accessible for legitimate use. This presents a problem of how
to differentiate attack traffic from legitimate traffic efficiently
and accurately in order to reduce collateral damage. It is par-
ticularly important in the case that the victim is a popular site
that would face flash crowd traffic. As pointed out in [11], in-
truder continues to combine different multiple types of packet
streams as attack option and also there exist attack tools that can
self-propagate and produce new types of attacks. Therefore, it
becomes a key issue for the detection mechanism to classify new
type of attack traffic. This also requires a notion of what legiti-
mate traffic is.

C. Defense Attack

The DDoS defense mechanisms should minimize the damage
of the attack traffic to the end point victim, as well as inter-
mediate network infrastructure (e.g., routers). Automatic and
real-time response is necessary; or it will be too late for the net-
work administrator to rescue the victim. Due to the distributed
nature of the attack, the defense mechanism should be easily
deployed in both edge network and backbone network without
incurring high cost and influencing the existing Internet infra-
structure in the aspects of, for examples, router loading and ex-
isting network protocols. The research presented in this paper
focuses on the detection and defense mechanism. We do not ad-
dress the traceback problem that locates sources of zombies and
hackers.

III. THE METHODOLOGIES USED

A. Attack and Victim Identification

In order to identify the existence of DDoS attack and the
target victim, we combine the space efficient Bloom filter [7]
data structure and leaky buckets algorithm [2] to monitor band-
width usage of network traffic passing through the router that
targets to a particular destination. The usage of Bloom filter has
been growing in networking community in recent years (e.g.,
[14] and [15]) to detect nonresponsive traffic and heavy flows,
respectively. One property of our Bloom filter is that we mea-
sure arrival rate of incoming traffic based on packet destina-
tion address or prefix and take into consideration that traffic
can be burst due to various network behavior such as transmis-
sion control protocol (TCP) slow start, retransmission, or bursty
application [22].

Bloom Filter: We implement Bloom filter as an array of L
groups of IV buckets (see Fig. 1) to summarize how much traffic
going to a particular destination within a fixed period. This al-
lows more effective access of the array in parallel although it
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Fig. 1. Bloom filter.

has a slightly higher probability than the usual one-dimensional
“power-two-based” Bloom filter on false positive [8]. In each
bucket, we keep the following values: a packet counter to record
how many packets that have arrived within the period, an theo-
retical arrival time to determine if a packet has arrived too early
to make the bucket overflow, and a threshold value to decide
how serious of bucket overflow should be classified as unexcep-
tional heavy volume of traffic flow.

Leaky Bucket: Initially, all values are set to zero. When in-
coming packets are delivered to the router, L independent hash
values are computed from their destination address prefixes to
identify the target victim network (to identify victim host, it can
simply set the address prefix length to be 32). Each hash value
is used as index to one of N buckets in each group for incre-
menting stored packet counter. Moreover, the theoretical arrival
time value is incremented with a fixed amount of service time
if the packet arrives to the mapped bucket later than the ex-
isting stored time value or slightly earlier than the theoretical
arrival time. However, if a packet arrives too early before the
theoretical arrival time and wait over a fixed period of time, the
packet is classified as an overflow packet and the stored overflow
counter is incremented. If overflow counters exceed the speci-
fied threshold values in each mapped L buckets, it is considered
to have an unexceptional heavy volume of traffic.

Hashing Scheme: To achieve better performance and the ease
of future extension to exchange Bloom filter detection infor-
mation among routers, we avoid executing L independent hash
functions on packet but repeatedly iterate a simple shift-register
random number generator [30] L times to generate L random
values based on packet’s destination IP address prefix and a pre-
defined constant as a seed. With this scheme, we can quickly
compute L hash values and can easily modify the behavior of
the generator by changing the predefined seed regularly to avoid
hacker to guess the behavior of the detection mechanism.

Adaptive Threshold Scheme: Since network traffic volume
varies from time to time and has bursts, it is impossible to use
a fixed threshold value to identify heavy traffic flow because
simply setting a very small value will generate many false pos-
itive results. Similarly, setting a very large value will generate
many negative results. We used an adaptive approach by peri-
odically perform sampling to make better estimate of threshold
values in each bucket to reflect the current situation. We borrow
the idea of TCP mean round-trip time and round-trip timeout
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estimation [21] to determine a dynamic overflow threshold as
follows. We keep an expected overflow count E in each bucket,
and it is set to zero initially. In each sampling period, the ex-
ponential weighted moving average of the value is updated ac-
cording to the formula Eyoy = w X M + (1 —w) X Eoq, where
M is the overflow counter stated in previous paragraph, and the
value w indicates the importance between current measurement
and the estimated value. We also compute mean deviation D
in each interval as Dyeww = Doa + u X (|M — E| — Dga),
where u also weights the current measurement against the pre-
vious estimation.

For simplicity, we assume both w and u share the same value.
Based on these values, we can set up the threshold value 7' =
Frew + n X Doy adaptively, where n denotes the number of
allowed deviations. If the overflow counter exceeds the current
T value, traffic currently mapped to the bucket is classified as
unexceptional heavy if it exceeds the expected number of ar-
rival packets plus some amount of mean deviations. For sites
that have low volume of traffic flow, this scheme may lead to
a small threshold value, which cause false alarms easily when
normal traffic flow through a site increased. Therefore, some
preconfigured lower bound is defined to automatically upgrade
small threshold value. Similarly, a preconfigured upper bound
threshold value is necessary to avoid too many false negatives.
Currently, sampling works in discrete interval to avoid too fre-
quent reset on the Bloom filter. This causes small number of
attack packets passing through when the volume of attack do
not attain to certain threshold.

B. Legitimate and Attack Traffic Classification

Once a DDoS attack and target victim are identified, we try
to identify attack traffic and legitimate traffic from the detected
heavy volume traffic streams so further actions can be taken to
protect both legitimate traffic and network infrastructure. Al-
though DDoS attack packets look legitimate, its massive volume
significantly affects the usual distribution of various packet at-
tributes within a period. Therefore, we build up the notion of
legitimate traffic at routers under usual situation and perform
fine-grain analysis on suspicious traffic to identify anomalies
from the built model.

Baseline Traffic Model: 1t is observed that distributions of
some invariant packet attribute values in legitimate traffic are
usually clustered and quite stable from site to site [24], [28]
under normal situation. One typical example is that without
Smurf attack or user datagram protocol (UDP) flood attack, the
number of TCP packets should dominant against UDP and In-
ternet control message protocol (ICMP) packets. Similarly, the
ratio of SYN flag against ACK flag and others in TCP packets
would increase drastically under SYN flooding attack. There-
fore, we characterize the legitimate traffic model by measuring
the distribution of different packet attribute values flow through
the router. We call it the baseline traffic profile.

Then, anomaly can be identified from legitimate traffic by
measuring the deviation. Since single attribute cannot reflect the
whole traffic characteristics and attacker can combine multiple
types of packet streams for attack, we construct the baseline
profile by combining distributions of multiple attributes as in
[26]. With this scheme, it is difficult for attacker to determine
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TABLE 1
TRAFFIC CHARACTERISTICS MEASURED FOR DDOS PACKET CLASSIFICATION

CHARACTERISTICS MEASURED IN RATIONALE FOR SELECTION

PROFILE
Percentage of different [P protocols
values versus total number of IP
packets
Percentage of different IP payload
length values versus total number of
IP packets
Percentage of different time-to-live
values versus total number of IP
packets
Percentage of different type-of-
service values versus total number
of [P packets
Percentage of different TCP source
ports values versus total number of
TCP packets
Percentage of different TCP
destination ports values versus total
number of TCP packets
Percentage of different TCP flags
values versus total number of TCP
packets
Percentage of different UDP source
ports values versus total number of
UDP packets
Percentage of different UDP
destination ports values versus total
number of UDP packets

To detect substantial change of
packets with unusual protocol
values, e.g. UDP flood.

To detect substantial change of
unusual size of packets.

To detect how far the packets are
coming from and what kind of IP
stack generate these packets.

To detect substantial change of
type-of-service value in IP
packets.

To detect substantial change of
TCP based application usage.

To detect substantial change of
TCP based application usage.

To detect abnormal change of
TCP based connection behavior.

To detect substantial change of
UDP based application usage.

To detect substantial change of
UDP based application usage.

all such site-specific information or generate attack stream to
the site that match all distributions.

Table I shows the list of traffic characteristics we measured
in baseline profile. Both the distribution of source and destina-
tion IP prefixes are also good representatives of network traffic
flowing through router. However, it requires a lot of memory to
represent the distribution of them and it is still under investi-
gation. Therefore, we do not include IP prefixes in our current
measurement.

Due to the large number of packet attribute values in each
characteristic but only some of them are dominant (usually
known as iceberg values), we currently expect network ad-
ministrator to partition packet attribute values into groups
for profiling. To solve this problem in the future, we plan to
use schemes [3], [25], [24] that determine those frequently
appeared iceberg entries automatically and measure their statis-
tics. In order to train the legitimate traffic model and minimize
the day-of-week and time-of-day effects, we adopt sliding
window approach to collect traffic statistics. Traffic in the
Internet would have expected fluctuation of arrival rates among
a period of time-of-day and day-of-week, so applying sliding
window technique would avoid using a fixed absolute value
for all periods and allow the acceptable variations from one
period to the other. The scheme divides each fixed time period
as a fixed number of equal-sized time-based windows. When a
packet arrives to a router, measured packet attributes values are
extracted and corresponding counters are updated accordingly.
When profiling process is completed, the moving average and
deviation of each (group of) attribute value(s) are collected.

Our baseline profile is designed to allow traffic measure-
ments from all the egress ports or a specific port. The advantage
of using a single profile to approximate traffic characteristics
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flowing through all ports reduce the memory requirement of
an intrusion detection router (IDR) to keep track of possibly
large number of histograms in per port profile, while using per
port profile, specifically collected for a network port, represents
traffic characteristics more accurately.

Packet Scoring: Beside the baseline traffic profile that is built
offline, we also collect runtime traffic statistics from the sus-
picious packet streams detected from the Bloom filter mech-
anism. Due to limited processing capacity in router, this run-
time profile is built with shorter measurement period, and in
discrete-time interval, instead of sliding window based as com-
pared with the baseline traffic profile. The baseline traffic pro-
file can be viewed as the expected likelihood of each packet
attribute values in legitimate traffic, while the runtime profile
measures the observed occurrences in current traffic. Therefore,
we define an anomaly score for each packet attribute value as
|m — p|/o, where p, o represent the expected mean value and
standard deviation of packet attributes values (ratio) in baseline
profile, respectively, while m represents the observed mean oc-
currence. This formula heuristically quantifies how much packet
attributes value deviate from its normal profile. Moreover, an
overall anomaly score is assigned for each suspicious packet by
computing the weighted sum of anomaly scores gained based on
the packet’s attribute values. The larger score value a packet has,
the more deviate from the expected values specified from the
normal baseline profile, and more likely to be abnormal. Thus,
it is classified as attack packet if its score value is higher than a
threshold value defined by the site administrator. Currently, we
use a static threshold value. In the future, we will consider ad-
justing the threshold value dynamically.

Robustness: It may be argued that the scheme can be defeated
if a sophisticated attacker knows the approximations of base-
line profile. However, note that the distribution of packets at-
tributes such as time-to-live (TTL), and those ratios are quite
site-specific. They are difficult for outsider to collect. By de-
ploying multiple IDRs to form security perimeters within an
organization, it is quite hard for attackers to use zombies dis-
tributed over the Internet to prepare traffic that satisfy these mul-
tiple attributes-based profiles kept in all detectors without being
detected. There may also exist slow attackers that attempt to
change the baseline profile so that they appear legitimate. How-
ever, it may take a long time for the attackers to do so, and the
system should have a threshold to bound the baseline profile so
that whenever the threshold is reached, the administrator should
be aware of the situation.

C. Mitigation of DDoS Attack

Once attack traffic is classified, defense actions should be
automatically taken place to mitigate the impact of the attack.
Fig. 2 shows the standalone defense mechanisms implemented
in the IDR system. By discarding those attack packets, this not
only prevents the bad packets from reaching target victim but
also dramatically reduces the workload of routers that forward
them and avoid wasting the network bandwidth in downstream
network. Hence, this can effectively protect the overall network
infrastructure.

We apply the well-known class-based queueing (CBQ) tech-
nique [17] to perform bandwidth management on the link that
forwards those low scored suspicious packets, including those
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Fig. 2. Defense mechanisms in IDR.

legitimate packets sharing the same destination with the attack
packets or poor packets that unfortunately map to all congested
buckets in the Bloom filter. The packets are regarded as poor
if the following occurs. When the Bloom filter parameter is set
with the destination address prefixes identify the target victim
network instead of the target victim. Then, both legitimate and
attack packets towards victim network would share the same
output link. The legitimate packets are considered as poor and
are rate-limited. In any case, this scheme ensures guaranteed
bandwidth can be given to poor packets that share the same
output link with suspicious packets, and thus reduce collateral
damage on legitimate traffic. Suspicious packets are put to a sep-
arate queue for rate limiting. The amount of bandwidth to be
given would be the affordable limit at the victim side so that le-
gitimate traffic can reach the victim, while unclassifiable attack
traffic cannot bring down the victim.

The automatic packet dropping and rate-limiting defenses are
effective to mitigate the impact of DDoS attack and reduce the
workload of router. With the autonomous nature of IDR, it is
easy to deploy many IDRs in the upstream autonomous system
(AS) networks to form distributed security perimeter and defeat
the DDoS attack at the earlier stage.

To summarize, the use of Bloom filters, leaky bucket, hashing
scheme for attack, and victim identification allow the system to
realize an attack with very little overhead in memory and com-
putation. For the classification of legitimate and attack traffic,
the baseline traffic model provides an adaptive scheme to fit
different networks, while the technique of packet scoring can
effectively classify a normal packet from an attack packet. Fi-
nally, the use of CBQ approach can mitigate the impact of DDoS
attack, while reducing the workload of router. For these com-
ponents to work smoothly, we need to integrate them together
nicely into the system. We will highlight and discuss how to
implement these components to obtain an effective system in
Section IV.

D. Deployment Discussion

We believe that DDoS attack problem should be solved in a
distributed way. We propose to deploy IDRs from the border
routers of each AS down to its internal routers to form levels of
security perimeter for protecting from DDoS attack.
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At the AS level, each IDR protects their downstream net-
work by monitoring traffic flow based on destination IP prefix
instead of a full 32-bit destination IP address. This keeps the
memory requirement of the Bloom filter at a low level for de-
tecting attacks on multiple victims, while maintaining a low
false positive rate. Analytically, the probability of classifying
legitimate packet as attack packet on the same set of buckets is
P=(1-(1-1/N)M)L where N is the number of buckets in
each level, L is the number of levels in the Bloom filter, and M
represents the number of flows being classified as heavy flows.
It can see that even we use a Bloom filter of 4 levels and 1024
buckets, which occupies only 144 kB memory in our implemen-
tation but with less than 1% false positive rate for protecting 256
potential targets or IP prefixes within the AS. At the downstream
routers that close to the stub network, IDRs can choose per desti-
nation IP address as heavy traffic flow measurement. This could
quickly identify any victim within its network.

We can also measure and keep baseline traffic profiles based
on the hierarchy or different length of network prefix within
the AS infrastructure. Routers near the AS border keep only
aggregated baseline profile for the network, while routers near
the stub network keep profiles per host or standard “template”
profile that describe maximum allowed traffic towards end host
inside the stub network. These profiles can be stored at sepa-
rate control server to offload the memory requirement of IDRs.
IDR can query these control servers for required profile through
private channel when suspicious DDoS attack occurs. As men-
tioned in the previous section, the profile size can be reduced
using iceberg-style that maintains only distributions of frequent
happen traffic characteristics values. We believe that this effec-
tively reduce the memory requirement of a router to store many
different type of baseline profiles. The remaining problem is
that when a router is already suffered from DDoS attack and
has not yet query control server for baseline profile that is used
to discard packet. This can be solved by always keeping one
per router-based profile at the router that measure traffic flow
through the IDR. The IDR can use this local baseline for ini-
tial packet discarding to reduce its loading during DDoS attack,
until it can spare CPU power to query control server for desti-
nation-based profile. Then, a more fine-grained packet classifi-
cation can be performed.

To form a security perimeter within the AS, we can apply
scheme similar to the pushback design [29]. That is, downstream
IDR propagates attack and defense related information to all
upstream routers once DDoS attack is identified, in case the
attack volume is not sufficiently concentrated for detection at
upstream. This information includes victim destination prefix,
scoring information, and scoring thresholds from downstream
router. Upstream IDRs can calculate scores for each incoming
packet with matched destination IP prefix, and then discard or
perform rate limit on those attack packets. However, all com-
munications should be done in private channel because the link
between downstream routers can be already congested due to
the attack before attack can be mitigated successfully. In addi-
tion, peer AS border IDRs can exchange these attack and de-
fense information so that attack can be suppressed as close to
the attack sources as possible. Downstream router can periodi-
cally query status of upstream routers regarding the volume of
dropped packets in order to determine the DDoS attack has been
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stopped or not. This effectively coordinates routers to perform
an online, DDoS defense.

We consider the design of communication protocols and
the distributed detection and defense cases as our future work.
Therefore, the experiments we describe in Section V simply
apply standalone IDRs in the network topology to show the
effectiveness of mitigating DDoS attack.

IV. IMPLEMENTATION ISSUES

In the following, we highlight the issues related to implemen-
tation of IDR.

1) Detecting DDoS should be done in real-time. If the imple-

mentation is done in user-level, the efficiency is a bit slow.
So, we propose to implement the core DDoS attack detec-
tion and defense in kernel mode.

2) The implementation of Bloom filter adaptive leaky bucket
should allow frequent access without a lot of page faults.
So, we carefully control the size of the Bloom filter table
and allocate expensive contiguous memory for it inside the
kernel.

3) For the traffic control, based on an existing Linux package,
iproute2, we port some of the programs in the package to
kernel module so that we can invoke the CBQ mechanism
within the kernel while allowing operator to manipulate the
CBQ parameters.

Kernel Versus User Space Implementation: In order to test
the effectiveness of the IDR system for defeating real-time
DDoS attack, we implement the schemes on Linux router
equipped with dual CPUs as prototype. Our schemes are
initially implemented as user-level program based on libpcap
library [27] instead of using network simulator approach [33]
because we want to measure system’s performance such as
CPU loading and network throughput in handling realistic at-
tack besides the detection accuracy. The benefits of developing
the system and all core schemes in user-level provide us a stable
environment for debugging and testing with both deterministic
traffic traces files and realistic network. However, it introduces
critical performance problem in real-time detection and de-
fense due to large overhead of copying packets from kernel to
user-level during DDoS attack. Also, we cannot find a way to
perform packet discarding at user-level based on Linux kernel
2.2. In fact, there are other problems with this version of kernel.

We finally chose the Linux kernel version 2.4.18-17, which
was the latest one at the time of development. The Linux 2.4
kernel provides a netfilter [37] framework that allows kernel
modules to perform further mangling packets beside the normal
network stack operations without modification on the original
kernel source tree. This version also reimplemented the bottom
halves as “multithreaded” softirgs so the network stack can run
simultaneously on all CPUs.

The current IDR system consists of four major components:
Linux kernel module that performs core DDoS attack detec-
tion and defense, Java-based network management client that
presents various status of monitored routers to remote network
operators graphically, a daemon-based agent that runs on each
router and perform polling on the kernel module and sent detec-
tion results to client regularly, and a user-level traffic profiling
tool that collects baseline profile. We concentrate the kernel
module details in the following paragraphs.
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The kernel module is designed modularly to allow incor-
poration of any new algorithms easily. It consists of three
parts: the intrusion detection module (IDM) that implements
the Bloom filter adaptive leaky bucket (BFALB) algorithm for
detecting DDoS attack and victim, the traffic statistic analyzer
(TSA) that performs fine-grained traffic analysis and discarding
suspicious packets, and the output traffic control (OTC) module
performs CBQ scheduling on suspicious packets. To make the
kernel module upgradeable for newer kernel version, we set up
“/proc” file system for both system configurations and runtime
status reporting instead of introducing any new system call.
Also, individual parts are able to turn on or off for changing
various parameters and running standalone for experimental
evaluations.

Various kernel data structures are created dynamically to sup-
port runtime configurations, including Bloom filter that contains
an array of adaptive leaky bucket cells, event queue that aggre-
gates numerous number of similar DDoS attack alerts based on
victim IP address and packet protocol value before reporting,
and traffic profiles that represents baseline profile and real-time
profile.

Bloom Filter Leaky Bucket: We use a Bloom filter table of
4 levels and 1024 bins that the requests of dynamic contiguous
memory allocation can be satisfied inside kernel while main-
taining low false positive rate. For kernel that allows up to 512
contiguous memory pages to be requested, we limit the max-
imum dimension of Bloom filter table up to a total of 8 levels
and 4096 bins which requires only 2 MB memory. We believe
that this is sufficient to produce a very small false alarm on mul-
tiple attack streams. We allocate expensive contiguous memory
for the Bloom filter within kernel because it is the most fre-
quently accessed structure. We do not want possibly frequent
page faults.

A fixed size circular event queue is employed to aggregate
huge amounts of similar DDoS alert information, and thus avoid
frequent reporting as a way to deny the service of the IDR. Cur-
rently, the textual alert information is reported at “/proc” file
system and is regularly requested from IDR agent daemon for
notification to GUI client. Destination IP addresses, IP protocol
value, and timestamp of attack packets is inserted into the queue
in case the previous attack event does not share the same set of
information. The packet timestamp denotes either the first or
latest detection time in the event structure and the number of
this event occurrence is also increased. When there is no more
empty slot in the event queue for new entry, the existing entries
except the latest ones are removed and this involves updating
the queue’s head counter and length only. Currently, the system
is configured to aggregate 10000 similar attack packets as an
event and the queue keeps 100 entries.

To reinitialize the leaky bucket cells for sampling, a kernel
timer is triggered at a fixed interval. Currently, the interval is set
at 5 s. Setting it to a small value may lead to too many software
interrupts and incur large overhead for detection such as wasting
CPU cycles to perform concurrency control. Setting it to a large
value may accumulate more legitimate packets that are hashed
to same buckets and cause bucket overflowed or congested.

Each traffic characteristic within baseline and real-time
traffic profile is implemented as fixed length array of buckets
because packet attributes distribution is dominated by some
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values and some less frequently appeared attribute values can
be shared with the same bucket. We assume that network
operators can collect profile to deduce the maximum number
of icebergs. The maximum array size currently is set to 128
so that it can handle sufficient number of icebergs values. In
order to update bucket value, we current scan on the array
to locate the bucket within the array due to the possibility of
range settings in some buckets.

Since the main purpose of real-time traffic profile is to
prepare anomaly score for packet attribute values, we use the
packet arrival time to estimate the start and end of window
frame for the profiling period instead of generating kernel
timer interrupt. We believe that it is simple enough and avoid
generating too many software interrupts.

Usage of Netfilter: To examine all sanity checked packets
coming from the network, we implement the BFALB algorithm
at the netfilter’s NF_IP_PRE_ROUTING hook and set a mark
to the memory buffer (sk_buff) of each suspicious packet. This
mark is useful at a later stage for traffic control. Moreover,
marked packets are passed to the Traffic Statistics Analyzer
for analysis and scoring within this hook. The kernel module
either discards high scored packet by returning the NF_DROP
value inside the hook or lets low scored packets to continue
traversal within kernel by returning the NF_ACCEPT value. It
offloads the CPUs from further process (such as forward those
attack packets inside the kernel) and mitigate the problem of
receiving network interrupts continuously (known as livelock
problem) in a general way instead of those hardware specific
solution described in [30].

Currently, we observed that layer four’s packet header infor-
mation is not extracted to the memory sk_buff buffer due to the
IP layer nature of the netfilter system. Therefore, we expect that
there should be fewer layer four packets that would fail from
sanity checks and rejected through the scoring mechanism.

We placed another hook at the NF_IP_FORWARD point to
create queueing disciplines to rate limit low score suspicious
packets. Issues on using the queueing disciplines within kernel
will be further described in this paper.

Traffic Control Implementation: We apply the Linux iproute2
package [1] that provides implementation of various packet
scheduling methods to offer major traffic control features such
as queueing disciplines, classes (within a queueing discipline),
filters, and policing. The package can be divided into kernel
part that interacts with network device to schedule outgoing
packets, and user-level part that validates operator’s traffic
control commands and converts parameters to fit with kernel
processing. In our application of CBQ to control link bandwidth
sharing between suspicious packets and legitimate packets,
we set up a root queueing discipline with maximum allowed
bandwidth of link device. The purpose is to control overall
transfer rate for outgoing device that forwards both suspicious
and legitimate packets. A child class is constructed to limit the
suspicious packets with transfer rate set by network operators.
This rate is a value safe to the downstream victim and would
not cause significant collateral damage on legitimate traffic to
the victim, such as 50% of link bandwidth. Based on the mark
placed from the BFALB algorithm as handle at an earlier stage,
we can set up a filter to efficiently distinguish packets and put
to different queueing disciplines.
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One possible implementation of applying iproute2 package
is to run a user space daemon that wait for kernel request on
setting up CBQ commands and parameters upon DDoS attack.
This requires either new definition of real-time kernel message
based on mechanisms like rtnetlink socket and system call, or
let the daemon poll system “/proc” file regularly and invoke
the commands. The first way is not portable, while the second
one seems not effective if everything is already working in-
side kernel but defense mechanisms parameters are passed be-
tween kernel and user space for derivation. We notice that the
user space tc program performs a lot of floating point computa-
tion for deriving appropriate values for CBQ parameters such as
maximum idle time [18] that should be avoided in kernel devel-
opment [36], and the intelligent queueing disciplines black box
is only callable through rtnetlink mechanism from user-level.
Instead, we choose another approach by porting part of the tc
program as part of our kernel module so that we can invoke
the CBQ mechanism within the kernel while still allowing the
network operator to manipulate CBQ parameters. The porting
mainly involves four parts.

1) Perform careful integer approximation on some CBQ pa-
rameters by scaling and rewriting the formula. The error
due to our integer approximation way on deriving CBQ pa-
rameters is expected to be 1%—2% for some cases.

2) Mimic the nonexported part of the rtnetlink mechanisms so
that the queueing disciplines can still be invoked through
rtnetlink mechanism in kernel.

3) Implement a kernel thread that invokes queueing disci-
plines upon detection of attack. This is because directly
calling on queueing disciplines library within the bottom
halves is prohibited by the existences of some nonatomic
memory allocations found in queueing disciplines routines
in call path.

4) Reduce the usage of limited kernel stack memory by modi-
fying some of tc library that declare large local array within
routines that are in function call path at runtime.

Note that the system uses a number of counters to keep track
the traffic. If the counters are not reset from time to time, it may
have an overflow problem. To tackle this issue, we can do the
following. Assuming that we need to keep track of the traffic for
at least z consecutive hours, we divide x into, say ¢ periods. For
each period, we keep separate counters to store the values. We
accumulate the values in the original counter as time goes by.
Whenever overflow occurs (can be easily detected), we delete
the values for the earliest k& periods. The number of bits of the
counter, the values for z, ¢, k should be tuned according to the
real situation.

V. EXPERIMENTS AND RESULTS

In order to test the behavior of IDR systems in detecting and
defending realistic DDoS attacks, we built a Linux testbed that
has 21 software routers and 65 end-host desktops to simulate
a portion of Internet. Software routers and end hosts are con-
nected together through CISCO Catalyst 2980G-A and CISCO
2950-T network switches with virtual LAN technology enabled.
The CISCO 4006 router is connected to outside network. Fig. 3
shows the experimental platform for the experiments. The soft-
ware routers are DELL PowerEdge 1650 rack mountable servers
equipped with dual Pentium-III 1.4 GHz CPU, 512 MB PC-133
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SDRAM, two Intel Pro100S dual port FastEthernet adaptor, and
two 1Gbit/s fast Ethernet port. The end hosts are composed of
both Desktop PC equipped with Intel Pentium-4 1.7 GHz CPU,
256 MB memory, integrated 3Com 10/100 Ethernet card and
AMD Duron 800 MHz CPU, 128 MB memory, and 100 Mbits/s
Realtek Ethernet card. The machines are installed with RedHat
7.3 and Linux kernel 2.4.18.

Internet application traffic including web, e-mail, ftp, news,
and DNS and UDP streams are generated among end hosts as
legitimate background traffic, except subnet 11 that currently
connects the testbed to the Intranet and provides master services
like DNS, NIS, and NTP to the whole testbed. Moreover, both
backbone and software routers are operating under OSPF pro-
tocols. For the traffic sent from the top to the bottom within the
topology, routing tables are configured to pass through middle
software routers such as 5 and 9 instead of the CISCO router
currently so that we can have better insight of the Linux router
behavior under DDoS attack. The background traffic in each
subnet is generated continuously and randomly with a global
set of parameters such as number of servers and their location
for connections, numbers of files allowed for download, number
of e-mail sizes, etc., such that the average loading of about
10 Mbits/s traffic is generated from each subnet. This traffic gen-
eration will introduce a small degree of variations in the packets
generated, which should not impose significant impact in our
measurements.

We distributed zombies evenly at the top of the topology
and attacked victim at the bottom. Our experiments apply the
TFN2K [4] attacker tool to generate TCP SYN flood attack.
There will be 8 zombies located at subnet 12, 19, 10, 4, 8, 17,
21, and 18. The attack is commanded from subnet 11 and last for
about a 15 min interval. The attacker sends at its full speed to de-
liver about 9000 packets/s. Note that due to the limitations of the
routers, the communication links and the switches, the current
testbed cannot handle traffic of 10 Gb/s which is the real traffic
volume in the Internet. However, our testbed should be able to
provide better insights to the investigator on the effectiveness of
the proposed schemes than a pure simulation. Currently, attack
packet size is of 1500 bytes. Results on slower attack rates and
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Fig. 4. Response time in detecting DDoS using BFALB algorithm.

TABLE II
BFALB PARAMETERS USED FOR TESTING DDOS ATTACK DETECTION

Netmask length to detect portion of victim IP 32

prefix

Number of levels in Bloom Filter 4

Number of bins in Bloom Filter 1024
Sampling period 5 seconds
Processing time used in leaky bucket 5000 psec
Max waiting time used in leaky bucket 1000 psec

Initial overflow threshold (within sampling period)
Minimum overflow threshold (within sampling

25,000 packets
25,000 packets

period)

Maximum overflow threshold (within sampling 30,000 packets
period)

New sampling weight 1

Deviation allowed 1

on different types of attacks will be briefly discussed at the end
of this section.

Bandwidth and Victim Detection Experiment: Our first exper-
iment shows that exceptional heavy volume traffic from DDoS
attack the victim and can be identified in the presence of some
legitimate background traffic by using the BFALB algorithm. In
Fig. 4, we measure the time that the IDR system first detected
the exceptional heavy flow. It is found that every router can de-
tect the attack within 8 s. The z axis of the graph presents the
router location in the topology where the expected amount of at-
tack traffic is received in increasing order. We observe that there
is an increase of response time for some downstream routers due
to packet loss and congestion of some middle routers that have
aggregated large amounts of attack packets.

Bloom Filter CPU Loading Experiment: To demonstrate
that the BFALB detection algorithm can be applied to router
with limited spare CPU cycle, we measure the incurred system
loading of the IDR routers under DDoS attack using the set of
parameters given in Table II. Fig. 5 reveals the system loading
for each router with and without the IDR system under DDoS
attack. From the graph, we can see that when a router received
significant amounts of aggregated traffic, the system loading
is increased significantly. However, overhead imposed by the
Bloom filter algorithm is less than 2% and is not significant as
compared with CPU consumption on handling traffic passing
through it. The problem of packet loss also causes a drop of
CPU loading in some downstream routers such as idr013 to
idr015.
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Fig. 5. System loading of the BFALB algorithm in detecting DDoS attack.

TABLE III
BASELINE PROFILING SETTINGS

Packet Values partition Scoring
attributes weight
IP protocol # 0, 1,2-5,6,7-16, 17, 18-127, 128-255 1
IP payload 0-15, 16-31, 32, 33, 48-63, 64-127, 1
length 128-255, 256-511, 512-1023, 1024-1479,

1480, 1481-65535
IP TTL values  0-31, 32-56, 57, 58, 59, 60, 61, 62, 63, 1

64, 65-127, 128-191, 192-255

0, 1-7, 8-15, 16-31, 32-63 1
TCP flags 0-1,2-3,4-7, 8-15, 16, 17, 18, 19, 20, 1
values 21,22,23,24,25-31, 32-63

TCP source port 0-19, 20-21, 22, 23, 24,25, 26-118, 119, 1

IP TOS values

values 120-255, 256-511, 512-1023, 1024-1999,
2000-2999, 3000-3999, 4000-4999, 5000-
5999, 6000-6999, 7000-7999, 8000-8999,
9000-9999, 10000-19999, 20000-29999,
30000-39999, 40000-49999, 50000-59999,
60000-65535

TCP destination Same as above 1

port values

UDP source 0-52, 53, 54-1023, 1024-1999, 2000-2999, 1

port values 3000-3999, 4000-4999, 5000-5999, 10000-
29999, 30000-49999, 50000-65535

UDP 0-52, 53, 54-1023, 1024-1999, 2000-2999, 1

destination port 3000-3999, 4000-4999, 5000, 5001, 5002-

values 9999, 10000-29999, 30000-49999,

50000-65535

Packet Classification Accuracy Experiment: In order to
determine the accuracy of packet classification on suspicious
packets, we perform baseline profiling on each router for
3 hours with window frame size of 600 s and step of 120 s
to collect legitimate traffic model. The real-time traffic profile
is built with window frame size of 60 s. Table III shows the
profiling settings.

Then, victim is attacked by different kinds of attack streams
and spoofed packets and we counted the number of misclassi-
fied packets based on our knowledge of our network IP prefix
within a period of 30 min. We use the static threshold value 40
which is equivalent to the maximum score of any four attributes,
respectively. Table IV shows the results at each router. IDR suc-
ceeds to differentiate legitimate and attack traffic under appro-
priate profiling and settings in most routers.
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TABLE IV
PACKET CLASSIFICATION ACCURACY UNDER TCP SYN FLOODING
WITH FULL ATTACK RATE
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idr002 536053 47 88796 0 0 0.00% 0.00%
idr011 337523 9 21925 0 0 0.00% 0.00%
idr019 7453785 149 1397407 0 0 0.00% 0.00%
idr010 7288506 1409 1363748 0 0 0.00% 0.00%
idr017 7640832 317 1435428 0 0 0.00% 0.00%
idr021 7218589 115 1350274 0 0 0.00% 0.00%
idr012 12893224 230 2404395 0 0 0.00% 0.00%
idr004 12935878 1537 2412145 0 0 0.00% 0.00%
idr008 13368080 619 2499646 0 0 0.00% 0.00%
idr018 12492752 2616 2322919 0 0 0.00% 0.00%
idr001 7084480 1025 1320401 0 0 0.00% 0.00%
idr003 7388280 642 1381546 0 0 0.00% 0.00%
idr005 13616841 1419 2531616 0 0 0.00% 0.00%
idr009 13544664 2334 2515132 0 0 0.00% 0.00%
idr013 6709660 766 1243992 0 50257 0.00% 4.04%
idro16 6675969 1528 1236860 0 49845 0.00% 4.03%
idr006 7367485 1115 1377113 0 0 0.00% 0.00%
idr007 6561828 1316 1214624 0 0 0.00% 0.00%
idro14 6847608 1269 1272796 0 110606 0.00% 8.69%
idr015 6557558 1488 1213678 0 86657 0.00% 7.14%
idr020 13792055 2833 2563610 0 280203 0.00% 10.93%

Packet Classification Loading Experiment: We measure the
extra CPU loading imposed by the packet classification mecha-
nism on suspicious packet streams. Since IDR turns on packet
classification mechanism only when it detects exceptional heavy
traffic, discarding attack packets leads to smaller number of at-
tack packets sent to the bottom of the topology and cannot reveal
the full picture of down stream routers under heavy congestion.
Therefore, our loading measurements are carried out without
packet discarding. Fig. 6 shows the increase of system loading
and actual system loading on each router. When more traffic
are aggregated, the CPU consumption relative to total CPU time
spent on forwarding packets increases. However, under current
environment and setting, the extra loading of the packet classi-
fication mechanism is bounded by not more than 4%. When we
apply the packet discarding defense mechanism, there is a sig-
nificant drop in CPU loading compared to the case without de-
fense because CPU times were saved from not forwarding those
heavy volume of discarded attack packets.

Sustained Throughput With Complete Defense Experiment:
To measure the sustained throughput after applying IDR defense
mechanisms in all routers, we perform an ftp session in a subnet
1 (10.1.1.3) to download a file of size 17.2 MBytes from the ftp
server inside an innocent server within victim subnet 20. The
transfer rate is recorded. Fig. 7 shows the results. If there are
attacks without defense, none of the legitimate FTP requests are
connected successfully. When we switch on the IDR system for

2¢— Attack without IDR
Fig. 6. Loading of packet classification with and without packet discard.
FTP upload througput in the test bed
10.00
8.00 /?\
Q
2 6.00
2 400 R 2
= 4/ Ny a_oul
N |
2.00 2/ << -
S ~&
0.00 T T T T T T T T

Trials
’ —&@— No attack —— Under attack with defense

Fig. 7. FTP throughput on DDoS attacked testbed with defense enabled.

TABLE V
TRANSFER DELAY FOR DWARD AND IDR

Average Transfer Time (sec)

No attack (for reference) 220.5
DWARD 838.2
IDR 547.7

defense, the average throughput of the system can retain about
1/2 of that of the system when there is no attack.

We also investigate the delay experienced by the system (see
Table V). The delay is about double. All legitimate FTP requests
are completed even under attack.

Sustained CPU Loading With Complete Defense Experiment:
We also measure the loading of routers after applying all defense
mechanisms in the IDR routers. Fig. 8 shows that with com-
plete defense, the CPU loading of all the routers with DDoS at-
tack packets passing through drops from 10% to 2% compared
with the case without defense. This is because CPU times are
saved from not forwarding those heavy volumes of discarded
attack packets. No attack packets passed through router idr002
and idr011. Therefore, with complete defense, the CPU loading
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raised because of the extra workload from the DDoS detection
mechanism.

Attacks With Different Rates and Different Types: We have
also performed experiments with attacks different rates and dif-
ferent types of attacks. We have tried to generate packets at the
rates of 3000, 5000, and 9000 packets/s. For attacks, we have
tried the generic attack (the attributes are set randomly), the
SYN flood attack, the UDP flood attack, and a mix of all the
above. The performance of our system is more or less the same
for different types of attacks.

For attack rates, we observed that for slow attack rates, some
of the IDRs (usually at upstream) may not regard the attack
packets as harmful, so basically let the packets pass through.
In fact, none of the normal packets has been dropped in these
IDRS. In other words, the volume of the attack packets is not
large enough to affect the normal operation of the systems. We
also noted that some of the IDRs may accept attack packets but
maintaining TSA false positive around 0%. In other words, al-
most all the normal packets are not dropped. This implies that
as long as the attack traffic is not heavy enough, it will not af-
fect the normal traffic a lot. In that case, accepting some attack
packets would not be a problem. On the other hand, when the
attacks are generated with full speed, the performance of the
system is similar to that shown in Table IV.

Remark: We have also evaluated the performance of the
system by setting different weights for different attributes
under the four different attacks (UDP, TCP, ICMP, and the
combinations of these three). Our preliminary results show that
TTL is a critical attribute for differentiating the attack packets
from the normal packets. On the other hand, we found that
the system still works well by setting the weights to different
values. We have tried to set the weight of TTL to vary from 1
to 4 and we still got a similar performance under the attacks
In most of the cases, the threshold can remain as 40. In other
words, the performance of the system is quite robust. Note that
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if TTL is spooled, it may affect the performance of the system.
However, the system is based on the combination of attributes
for classifying the attack packets. It may not be easy for the
attackers to spool a packet that can escape the detection. On
the other hand, we need to investigate further the effect of the
attributes in order to have a better scheme to combine different
attributes for the detection of attack packets.

VI. COMPARISON WITH DWARD

We have compared the performance of our system with
DWARD. We have used the topology shown in Fig. 9 for the
experiment. We have set up four DWARD routers deployed
at the outgoing gateways of four different subnets (8, 18, 19,
20). When using IDR, we deployed three IDRs at the junctions
where the subnets join (3, 5, 20). This setup should optimize
the performance of both DWARD and IDR. Eight attackers
are distributed in four subnets (8, 10, 18, 19). Each of these
subnets has two attackers and one legitimate host. All attacks
are towards the victim at Network 22. The attacks are generated
at its full speed (about 9000 packets/s). The attack type is
generic attack with random packet attributes (with TCP, UDP,
ICMP). For DWARD, we use the default settings.

We then start ten ftp transfer sessions from a machine in Net-
work 11 to get a 1.85 GBytes file from the victim. This legiti-
mate ftp traffic will share the attack traffic on the same path to-
wards the victim. The link capacity for the victim is 100 Mb/s,
while the total attack traffic is about 56 Mb/s. We measure the
following for comparisons, the CPU loading, the memory con-
sumption, and the average delay in the ftp transfer. We have
repeated the experiments ten times. Based on our experiments,
we found that the CPU loading is at least five times more using
DWARD than IDR. For the memory consumption, DWARD
also uses more memory (several times more than IDR). Table V
shows the average delay for the ftp transfer in the experiments.
There are delays using either DWARD or IDR. The delay for
IDR is a little bit shorter than DWARD. A similar result has
been obtained by putting DWARD and IDR some other routers.

Note that this is only a preliminary comparison between the
two systems. A more in-depth evaluation on these systems to-
gether with other intrusion detection systems should be carried
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out in the future. Also, we realize that DWARD and IDR can
be used together as their design principles are complementary.
DWARD is a source-end detection router and it can do an excel-
lent task to avoid attack packets to be sent out from its subnet. On
the other hand, IDR is best to be deployed in ISPs so that when
the attack packets from different subnets arrive at the junction,
IDR can easily detect the attack.

VII. CONCLUSION

In this paper, we have discussed the design, the implemen-
tation, and the evaluation of an IDR based on a testbed that is
made up of a cluster of linux machines. We show by real ex-
periments, instead of simulation, that IDR is effective in pro-
tecting a network from DDoS attacks. Although the testbed is
still far from the real Internet, by performing real experiments in
the testbed can help investigators to have a better understanding
on the actual performance of the proposed schemes. We believe
that based on the experience of this testbed, a better one can be
designed and constructed to represent a more realistic setting.

Future work includes the following.

1) Apply existing Internet traffic trace in combination of real
DDoS attack tool for a more complete evaluation of our
scheme and others’ schemes.

2) Consider the direction of distributed defense with router
cooperation and communication.

3) Traceback.

4) Sophisticated scoring scheme with dynamic threshold.

5) Traffic detection based on individual router link.

6) Apply iceberg scheme to automatic identify profile.

7) Apply control network for defense router communication.
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