445 research outputs found

    Joint localization of pursuit quadcopters and target using monocular cues

    Get PDF
    Pursuit robots (autonomous robots tasked with tracking and pursuing a moving target) require accurate tracking of the target's position over time. One possibly effective pursuit platform is a quadcopter equipped with basic sensors and a monocular camera. However, combined noise of the quadcopter's sensors causes large disturbances of target's 3D position estimate. To solve this problem, in this paper, we propose a novel method for joint localization of a quadcopter pursuer with a monocular camera and an arbitrary target. Our method localizes both the pursuer and target with respect to a common reference frame. The joint localization method fuses the quadcopter's kinematics and the target's dynamics in a joint state space model. We show that predicting and correcting pursuer and target trajectories simultaneously produces better results than standard approaches to estimating relative target trajectories in a 3D coordinate system. Our method also comprises a computationally efficient visual tracking method capable of redetecting a temporarily lost target. The efficiency of the proposed method is demonstrated by a series of experiments with a real quadcopter pursuing a human. The results show that the visual tracker can deal effectively with target occlusions and that joint localization outperforms standard localization methods

    Increasing the simulation performance of large-scale evacuations using parallel computing techniques based on domain decomposition

    Get PDF
    Evacuation simulation has the potential to be used as part of a decision support system during large-scale incidents to provide advice to incident commanders. To be viable in these applications, it is essential that the simulation can run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of processors. This paper presents the development of a parallel version of the rule based evacuation simulation software buildingEXODUS using domain decomposition. Four Case Studies (CS) were tested using a cluster, consisting of 10 Intel Core 2 Duo (dual core) 3.16 GHz CPUs. CS-1 involved an idealised large geometry, with 20 exits, intended to illustrate the peak computational speed up performance of the parallel implementation, the population consisted of 100,000 agents; the peak computational speedup (PCS) was 14.6 and the peak real-time speedup (PRTS) was 4.0. CS-2 was a long area with a single exit area with a population of 100,000 agents; the PCS was 13.2 and the PRTS was 17.2. CS-3 was a 50 storey high rise building with a population of 8000/16,000 agents; the PCS was 2.48/4.49 and the PRTS was 17.9/12.9. CS-4 is a large realistic urban area with 60,000/120,000 agents; the PCS was 5.3/6.89 and the PRTS was 5.31/3.0. This type of computational performance opens evacuation simulation to a range of new innovative application areas such as real-time incident support, dynamic signage in smart buildings and virtual training environments

    Relationship between human tumour angiogenic profile and combretastatin-induced vascular shutdown: an exploratory study

    Get PDF
    Combretastatin-A4-phosphate (CA4P) acts most effectively against immature tumour vasculature. We investigated whether histological angiogenic profile can explain the differential sensitivity of human tumours to CA4P, by correlating the kinetic changes demonstrated by dynamic MRI (DCE-MRI) in response to CA4P, with tumour immunohistochemical angiogenic markers. Tissue was received from 24 patients (mean age 59, range 32–73, 18 women, 6 men). An angiogenic profile was performed using standard immunohistochemical techniques. Dynamic MRI data were obtained for the same patients before and 4 h after CA4P. Three patients showed a statistically significant fall in Ktrans following CA4P, and one a statistically significant fall in IAUGC60. No statistically significant correlations were seen between the continuous or categorical variables and the DCE-MRI kinetic parameters other than between ang-2 and Ktrans (P=0.044). In conclusion, we found no strong relationships between changes in DCE-MRI kinetic variables following CA4P and the immunohistochemical angiogenic profile

    Interfacility Helicopter Ambulance Transport of Neurosurgical Patients: Observations, Utilization, and Outcomes from a Quaternary Level Care Hospital

    Get PDF
    The clinical benefit of helicopter transport over ground transportation for interfacility transport is unproven. We sought to determine actual practice patterns, utilization, and outcomes of patients undergoing interfacility transport for neurosurgical conditions.We retrospectively examined all interfacility helicopter transfers to a single trauma center during 2008. We restricted our analysis to those transfers leading either to admission to the neurosurgical service or to formal consultation upon arrival. Major exclusion criteria included transport from the scene, death during transport, and transport to any area of the hospital other than the emergency department. The primary outcome was time interval to invasive intervention. Secondary outcomes were estimated ground transportation times from the referring hospital, admitting disposition, and discharge disposition. Of 526 candidate interfacility helicopter transfers to our emergency department in 2008, we identified 167 meeting study criteria. Seventy-five (45%) of these patients underwent neurosurgical intervention. The median time to neurosurgical intervention ranged from 1.0 to 117.8 hours, varying depending on the diagnosis. For 101 (60%) of the patients, estimated driving time from the referring institution was less than one hour. Four patients (2%) expired in the emergency department, and 34 patients (20%) were admitted to a non-ICU setting. Six patients were discharged home within 24 hours. For those admitted, in-hospital mortality was 28%.Many patients undergoing interfacility transfer for neurosurgical evaluation are inappropriately triaged to helicopter transport, as evidenced by actual times to intervention at the accepting institution and estimated ground transportation times from the referring institution. In a time when there is growing interest in health care cost containment, practitioners must exercise discretion in the selection of patients for air ambulance transport--particularly when it may not bear influence on clinical outcome. Neurosurgical evaluation via telemedicine may be one strategy for improving air transport triage

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Why can pulmonary vein stenoses created by radiofrequency catheter ablation worsen during and after follow-up ? A potential explanation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiofrequency catheter ablation of excitation foci inside pulmonary veins (PV) generates stenoses that can become quite severe during or after the follow-up period. Since severe PV stenoses have most often disastrous consequences, it would be important to know the underlying mechanism of this temporal evolution. The present study proposes a potential explanation based on mechanical considerations.</p> <p>Methods</p> <p>we have used a mathematical-physical model to examine the cyclic increase in axial wall stress induced in the proximal (= upstream), non-stenosed segment of a stenosed pulmonary vein during the forward flow phases. In a representative example, the value of this increase at peak flow was calculated for diameter stenoses (DS) ranging from 1 to 99%.</p> <p>Results</p> <p>The increase becomes appreciable at a DS of roughly 30% and rise then strongly with further increasing DS value. At high DS values (e.g. > 90%) the increase is approximately twice the value of the axial stress present in the PV during the zero-flow phase.</p> <p>Conclusion</p> <p>Since abnormal wall stresses are known to induce damages and abnormal biological processes (e.g., endothelium tears, elastic membrane fragmentations, matrix secretion, myofibroblast generation, etc) in the vessel wall, it seems plausible that the supplementary axial stress experienced cyclically by the stenotic and the proximal segments of the PV is responsible for the often observed progressive reduction of the vessel lumen after healing of the ablation injury. In the light of this model, the only potentially effective therapy in these cases would be to reduce the DS as strongly as possible. This implies most probably stenting or surgery.</p
    • 

    corecore