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Abstract Pursuit robots (autonomous robots tasked with tracking and pursuing
a moving target) require accurate tracking of the target’s position over time. One
possibly effective pursuit platform is a quadcopter equipped with basic sensors
and a monocular camera. However, combined noise of the quadcopter’s sensors
causes large disturbances of target’s 3D position estimate. To solve this problem,
in this paper, we propose a novel method for joint localization of a quadcopter
pursuer with a monocular camera and an arbitrary target. Our method localizes
both the pursuer and target with respect to a common reference frame. The joint
localization method fuses the quadcopter’s kinematics and the target’s dynam-
ics in a joint state space model. We show that predicting and correcting pursuer
and target trajectories simultaneously produces better results than standard ap-
proaches to estimating relative target trajectories in a 3D coordinate system. Our
method also comprises a computationally efficient visual tracking method capable
of redetecting a temporarily lost target. The efficiency of the proposed method is
demonstrated by a series of experiments with a real quadcopter pursuing a human.
The results show that the visual tracker can deal effectively with target occlusions
and that joint localization outperforms standard localization methods.
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1 Introduction

Surveillance and monitoring using human operators can be tedious, difficult, dan-
gerous, and error prone. Recent technological developments have enabled the use
of mobile robots and vision systems for such applications. Our focus is on mobile
robots that are capable of tracking and monitoring a target in scenarios such as
person/child/animal monitoring or tracking a fugitive. Ground robots might be
useful in some scenarios, but they are expensive and difficult to navigate, as they
must avoid obstacles in the field, negotiate uneven surfaces, and place sensors
over a sufficient range of heights to get a good view of both the object of interest
and the terrain. On the other hand, aerial robots with airborne sensors, which
are capable of low-altitude flying and vertical takeoff and land (VTOL) maneu-
vers, would require less complex navigation and would provide a better field of
view. Aerial robots are already being used for other applications such as sports
assistance [17], traffic monitoring [14], fire detection [25], remote sensing [18], and
precision agriculture [8,16,15,23,2].

Quadcopters are VTOL aerial vehicles with four rotary wings that can hover
over a fixed location or perform quick maneuvers but may have limited on-board
sensors and processing power due to low payload capacity.

We are investigating the feasibility of autonomous pursuit of targets using
inexpensive quadcopters with monocular cameras. We use the Parrot AR.Drone
quadcopter (shown in Fig. 1) for research purposes. The AR.Drone is an inexpen-
sive quadcopter with a built-in control system enabling it to hover in a stationary
position. For visual tracking, the quadcopter features front-facing and downward-
facing cameras. Localization is aided by an accelerometer, a pressure sensor, a
three-axis gyro, and a magnometer. The robot can be teleoperated from a host
machine through WiFi.

In pursuit applications where the target’s position may be extremely dynamic,
the UAV should be capable of fast autonomous planning and motion. It must also
be able to track the target object in real time.

In this paper, we take steps toward robust UAV target pursuit. We focus on two
important challenges for the monocular vision-based tracker. First, we require an
appearance-based tracker that is sufficiently accurate and fast. Second, since such
a tracker will necessarily be extremely noisy, we require sensor modeling and state
estimation able to obtain target position estimates usable for motion planning.

In the following sections, we introduce related work in 2D visual target tracking
and state estimation for quadcopters and similar UAVs and then we outline our
contributions.

1.1 Localization

A pursuit robot must keep track of its position and orientation relative to the
target and surrounding environment. Localization is a form of sequential state
estimation. Sequential sate estimation methods are used extensively in robotics
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and computer vision to solve problems such as SLAM, monocular SLAM [11],
visual target tracking [24], and 3D reconstruction. Methods include Kalman filters,
particle filters [28], and grid-based methods. The most widely used filtering method
that supports non-linear state estimation models is the extended Kalman filter [32].

EKF models are fast and effective in any application in which the posterior
state estimate is accurately represented by a Gaussian. The EKF is the first choice
as a state filter when error is approximately Gaussian and the non-linearities in
the system and sensor are moderate. EKFs have been used by several researchers
to improve the performance of visual tracking methods [29,13,19].

Finding the position of a target relative to a UAV using a monocular camera
requires extraction of depth cues from the 2D image. Monocular depth cues are
extremely noisy, so relying purely on the 2D image to obtain 3D positions with
depths would introduce a great deal of error. One way to improve the noisy sensor
readings we would get from a 2D visual tracker is to filter based sensor estimates
with a sequential state estimator.

In a previous paper [4] we propose a state estimation model based on the
EKF for pursuit by SUGVs (Small Unmanned Ground Vehicles) to improve the
accuracy of the estimated trajectory of both the pursuit robot and the target. The
proposed method fuses robot kinematics and target dynamics to obtain superior
robot and target trajectory estimates.

In this paper, based on our previous work, we propose a joint localization model
that fuses quadcopter kinematics with target dynamics to improve the relative
trajectory estimates of both the quadcopter and the target.

1.2 2D object tracking

The major methods for 2D image-based tracking use either feature matching, op-
tical flow, or feature histograms. Feature matching algorithms such as SIFT [34],
SURF [31], and shape matching algorithms such as contour matching [33] are com-
putationally too expensive to be considered for real-time tracking by a small UAV
with modest compute resources. Optical flow methods [12] may be within reach in
terms of speed, but they do not maintain an appearance model. Histogram-based
trackers, on the other hand, are not only fast, but also maintain an appearance
model that is potentially useful for recovering tracking after an occlusion or reap-
pearance in the field of view.

Sliding window is a general approach in computer vision to look for a tar-
get object in an image. The naive sliding window approach is computationally
inefficient to scan an image to search a target. Porikli [27] propose an “integral
histogram” method using integral images to speed up the process. Perreault and
Hebert [26] compute histograms for median filtering efficiently by maintaining
separate column-wise histograms, and, as the sliding window moves right, first
updating the relevant column histogram then adding and subtracting the relevant
column histograms to the histogram for the sliding window. Sizintsev et al. [30]
take a similar approach to obtain histograms over sliding windows by efficiently
updating the histogram using previously calculated histograms for overlapping
windows.

CAMSHIFT (Continuously Adaptive Mean Shift) [6,1] is a fast and robust
feature histogram tracking algorithm potentially useful for UAVs. The method
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Fig. 1 Quadcopter visual sensors and coordinate system. The AR.Drone quadcopter incorpo-
rates a front-facing and downward-facing camera. Roll (γrt ) and pitch (βrt ) are used to control
forward-backward and left-right linear motions. Overall rotor speed is used to control upward-
downward motion. Yaw control is used for change in orientation. The front-facing camera is
useful in applications such as tracking and surveillance. The downward camera is useful for
inspecting building, crops, or a field.

begins with manual initialization from a target image patch. It then tracks the
region using a combination of color histograms, the basic mean-shift algorithm
[9,10], and an adaptive region-sizing step. It is scale and orientation invariant.
Unfortunately, since the method performs a search for a local peak in the global
backprojection, it is easily distracted by background objects with similar color dis-
tributions. In this paper, we incorporate an adaptive histogram similarity threshold
with CAMSHIFT to help avoid tracking false targets. We also use this adaptive
similarity threshold with a backprojection technique to recover the target object
and reinitialize the CAMSHIFT visual tracker after an occlusion.

1.3 Monocular visual tracking by UAVs

Bi and Duan [5] implement a visual tracking algorithm using a low-cost quad-
copter. The target is a colored landing platform that is moved manually on a cart.
The quadcopter is controlled by a host machine that processes the video stream
and tracks the landing platform. The host machine calculates the current position
of the landing platform by using the centroid of image moments calculated for
a binary image that is obtained after thresholding the green channel of the RGB
image. The authors use independent controllers for pitch and roll that receive feed-
back from the visual tracker. The feedback input to the controllers at each frame
is the current positioning error.

Kim and Shim [20] present a visual tracker and demonstrate its capabilities
and usage on a tablet computer with the AR.Drone. The method uses color and
image moments for the visual tracker.
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All of the object tracking and navigation algorithms proposed thus for low cost
UAVs use color and image moments. None of this work has demonstrated model-
based object tracking that is sufficiently fast and accurate for real time control of
a UAV.

1.4 Contributions

In this paper, we propose a novel joint purser and target localization model specifi-
cally for the AR.Drone that reduces position estimation error caused by monocular
sensor measurements. The model maintains an estimate of the state of the target,
assuming a simple linear dynamical model, as well as an estimate of the AR.Drone
robot’s state, assuming standard quadcopter robot kinematics [7].

We additionally propose a target tracking method suitable for quadcopters that
efficiently handles both visual detection and tracking in real time. We perform
target redetection when the target is occluded or leaves the field of view. We
suspend tracking based on an adaptive histogram threshold. Once the object is
reacquired in a redetection phase, we apply CAMSHIFT to confirm the redetected
object. After CAMSHIFT validation, we reinitialize the tracker.

We thus fuse information from 2D visual tracking and the UAV’s odome-
try measurements with knowledge of the AR.Drone’s kinematics in an extended
Kalman filter to obtain superior state estimation. The filter significantly improves
estimation accuracy compared to standard sensor-based position estimates as well
as compared to localization models not incorporating pursuit robot kinematics.

In an empirical evaluation, we show, on real-world videos, that the proposed
method is a robust approach to target tracking and redetection during pursuit
that is accurate, is successful at reinitialization, has very low false positive rates,
and runs in real time.

2 System Design

In this section, we introduce the AR.Drone’s hardware (sensors and actuators),
provide details of the pursuer-pursuit-target localization method for the AR.Drone,
and finally describe visual target tracking method.

2.1 Quadcopter overview

The AR.Drone has a carbon fiber support structure and a plastic body with re-
movable hulls optimized for indoor and outdoor flight. The rotors are propelled by
high-efficiency brushless DC motors and control circuitry. The drone is equipped
with one frontal and one bottom facing camera. The control board of the AR.Drone
consists of a 1-GHz ARM-Cortex-A8 32-bit processor with an 800 MHz digital sig-
nal processor and 2GB RAM. The user can control the quadcopter’s roll, pitch,
yaw, and vertical speed through a host machine over a WiFi link. The function
of the control board is to convert user navigation commands into motor com-
mands and to adjust the motor speeds to stabilize the drone at the required pose.
Fig. 2 shows how the drone communicates with the host machine. We use the video
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Fig. 2 System architecture and data flow. The base station receives sensor data (images and
odometry) at the given rates and latencies. The frequency of the odometry data (200 Hz) is
high compared to the image transfer rate (18 fps), so there is negligible synchronous error in
transporting ghostly.

stream from the frontal camera as the main sensor for localization. The camera has
a frame rate of approximately 18 fps. Estimated roll, pitch, yaw, vertical speed,
and velocity in the x-y plane are estimated from the onboard accelerometer, a
pressure sensor, a three-axis gyro, and a magnetometer and sent to the host at
200 Hz.

2.2 Mathematical model and algorithmic flow

In this section, we detail the joint localization method for the quadcopter purser
and target. Joint localization incorporates both target dynamics and drone kine-
matics to correct the sensor-based measurements of the target’s and purser’s state.
As the main target state measurement sensor, we use the AR.Drone’s front-facing
monocular camera.

The tracking algorithm’s flow is shown in Fig. 3. The monocular 2D visual
tracker tracks the target as long as it is in the field of view. The monocular visual
tracker returns a 2D tracking window indicating the target’s size and position
in the image. To transform 2D measurements into 3D, we take a ray from the
camera center through the image plane at the center of the 2D target region and
calculate the depth of the target along that ray using the assumed target height in
an absolute frame. Meanwhile, we acquire AR.Drone odometry data in the form,
at time t, of (γrt , β

r
t , α

r
t , h

r
t , ẋ

r
t , ẏ

r
t , ż

r
t ), where (γrt , β

r
t , α

r
t ) describes the roll, pitch

and yaw of the quadcopter, hrt is the measured altitude, and (ẋrt , ẏ
r
t , ż

r
t ) is the
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Fig. 3 Algorithm flow. The green box contains the visual target tracking phase of the al-
gorithm. The blue box contains the processing occurring in the redetection phase, when the
target is not in the scene. The red box contains localization for fusing odometery and target
tracking data.

linear velocity of the quadcopter in the robot coordinate system. See Fig. 4 for
visualization of the coordinate system. On the arrival of each image frame, the
target tracking sensor measurement and odometry data are fed to the proposed
joint localization model. The model predicts the pursuer’s and target’s new state
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based on the previous state and corrects (updates) the estimate based on the
newly acquired sensor measurement. If the target is occluded or leaves the camera
field of view, we stop 2D tracking and state correction, and we run a redection
algorithm until the target reappears, at which time we restart the normal flow of
the algorithm.

We briefly outline the visual tracking method below and provide more details
on the 3D state estimate model for the AR.Drone in next section. Refer to Basit
et al. [4] for more details on the 2D tracking algorithm, which proceeds as follows:

1. Initialize CAMSHIFT with initial image I0 and bounding box (xc, yc, w, h).
2. Continue CAMSHIFT tracking, updating adaptive histogram threshold.
3. Suspend tracking when similarity between region returned by the tracker and

appearance model is too low.
4. Run redetection.
5. Suspend redectection when candidate target most similar to the appearance

model is similar and large enough.
6. Run CAMSHIFT to confirm redetected region. If confirmed, reinitialize track-

ing; otherwise, return to redetection.

2.3 Joint Estimation of AR.Drone and Target State

In this section we describe the proposed model for obtaining smooth pursuer and
target trajectories in the 3D world coordinate frame.

2.3.1 System state

The system state expresses the UAV’s position and the target’s position and ve-
locity in the world coordinate frame. We define the system state at time t to
be

xt = [xt, yt, zt, ẋt, ẏt, żt, x
r
t , y

r
t , z

r
t , γ

r
t , β

r
t , α

r
t ]
T , (1)

where (xt, yt, zt) is the target’s position, (ẋt, ẏt, żt) is the target’s velocity,
(xrt , y

r
t , z

r
t ) is the pursuer’s position, and (γrt , β

r
t , α

r
t ) is the pursuer’s 3D orientation

(roll, pitch and, yaw) respectively. The positions and orientations are expressed in
the world coordinate frame. The state transition model is defined as

xt+1 = f(xt,ut) + νt, (2)

where νt ∼ N (0, Qt). f(xt,ut) has two components. The first component mod-
els the AR.Drone’s kinematics, assuming constant linear and angular velocity over
short time periods (acceleration is modeled as noise). The second component is
a first order linear dynamical system for the target’s motion. We describe each
component in turn. The odometry control vector is

ut =
[
δγrt δβ

r
t δα

r
t δh

r
t

]T
, (3)

defining the change in the roll (γrt ), pitch (βrt ), yaw (αrt ), and altitude (hrt ) of
the quadcopter at time t.
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Fig. 4 Birds-eye view of quadcopter motion in 3D world coordinate frame. The motion de-
pends on changes of roll, pitch and altitude controls, that in turn produce 3D linear and
angular motion. Linear velocities measurements (ẋrt , ẏ

r
t , ż

r
t ) are provided by three sensors. The

yaw (αrt ) angle is used to change the orientation of the quadcopter and also help to convert
velocities into world coordinate frame.

The state transition for the AR.Drone is then assumed to be

xrt+1 = xrt + (ẋrt cosαrt − ẏrt sinαrt ) ·∆t
yrt+1 = yrt + (ẋrt sinαrt + ẏrt cosαrt ) ·∆t
zrt+1 = zrt + δhrt

γrt+1 = γrt + δγrt

βrt+1 = βrt + δβrt

αrt+1 = αrt + δαrt , (4)

where (ẋrt , ẏ
r
t ) is the linear velocity of the quadcopter in the (x,y) plane. This

velocity depends on the quadcopter’s roll and pitch in the world coordinate frame.
See Fig. 5. We define the dynamics

ẋrt+1 = C1β
r
t

ẏrt+1 = C2γ
r
t

(5)

To transform the linear velocities from the UAV frame to the world coordinate
frame, we have

vwt = Rtv̇
r
t , (6)

where v̇rt is simply

v̇rt =
[
ẋrt ẏ

r
t ż

r
t

]T
(7)

and Rt is
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Fig. 5 (a). Change in linear velocity ẋt with respect to change in pitch angle βt. Velocity ẋt
is in cm whereas pitch is shown in radians. (b). Zoom image of image (a), by setting y-range
[−15 · · · 20].

Rt =

cαr
t
cβr

t
cαr

t
sβr

t
sγr

t
− sαr

t
cγr

t
cαr

t
sβr

t
cγr

t
+ sαr

t
sγr

t

sαr
t
cβr

t
sαr

t
sβr

t
sγr

t
+ cαr

t
cγr

t
sαr

t
sβr

t
cγr

t
− cαr

t
sγr

t

−sβr
t

cβr
t
sγr

t
cβr

t
cγr

t

 ,
where c· and s· are shorthand for the cosine and sine functions.

Target motion We assume a simple linear dynamics

xt+1 = xt +∆tẋt

yt+1 = yt +∆tẏt

zt+1 = zt +∆tżt

ẋt+1 = ẋt

ẏt+1 = ẏt

żt+1 = żt (8)

for the target object’s state.
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Linearization Since f(xt,ut) is nonlinear and we will be using an extended Kalman
filter, we must approximate the system described in Eq. 2 by linearizing around
an arbitrary point x̂t. We write

f(xt,ut) ≈ f(x̂t,ut) + Jft(xt − x̂t), (9)

where Jft is the Jacobian

Jft =

[
∂f(xt,ut)

∂xt

]
(10)

evaluated at x̂t. We omit the detailed Jacobian calculations.

2.3.2 Sensor model

We assume the quadcopter’s target tracking camera is mounted, in a fixed position
near the UAV’s center of rotation with roll (rotation around the principal axis)
close to 0. We also incorporate a 2D visual tracking algorithm, capable of producing
an estimate of the 2D position of the object’s projection into the image plane at
time t. We assume the operator initially defines the target object to pursue by
specifying a bounding box around it in the first frame. We use visual tracker
based on CAMSHIFT to track the object from frame to frame.

The measurement from the algorithm is thus simply a bounding box:

zt =
[
ut, vt, w

img
t , himgt

]T
, (11)

where (ut, vt) is the center and wimgt and himgt are the width and height of the
bounding box in the image. We model the sensor with a function h(·) mapping
the system state xt to the corresponding sensor measurement

zt = h(xt) + ζt, (12)

with ζ ∼ N (0, St).
For a pinhole camera with focal length f and principal point (cx, cy), ignoring

the negligible in-plane rotation of the cylindrical object, we can write target’s
center (ut, vt) and size (wimgt , himgt )

ut = (fxcamt + cx)/zcamt

vt = (fycamt + cy)/zcamt

wimgt = fw0/z
cam
t

himgt = fh0/z
cam
t , (13)

where (h0, w0) is the assumed target’s height and width, (xcamt , ycamt , zcamt ) is the
is the center of the target in the camera coordinate system and its homogeneous
representation is

xcamt = T
W/C
t


xt
yt
zt
1

 , (14)
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where the transformation T
W/C
t is defined as

T
W/C
t = T

R/C
T
W/R
t , (15)

where T
W/R
t is the rigid transformation from the world coordinate system to the

robot coordinate at time t, and TR/C is the (fixed) transformation from the robot
coordinate system to the camera coordinate system. Expressing the AR.Drone
orientation by a rotation matrix R

T

t at time t, we can write the transformation
matrix TW/R

T
W/R
t =

[
R

T

t −R
T

t xrt
0T 1

]
, (16)

where xrt =
[
xrt y

r
t z

r
t

]
.

As with the transition model, to linearize h(xt) around an arbitrary point x̂t,
we require the Jacobian

Jht
=

[
∂h(xt)

∂xt

]
. (17)

evaluated at an arbitrary point x̂t.

2.3.3 Initialization

We require an a-priori state vector x0 to initialize the system. As explained before,
we assume that the quadcopter is at the origin of the world coordinate system or an
alternative initial position of the robot is given. We do not assume any knowledge
of the target’s initial trajectory. We can therefore treat the user-provided initial
target bounding box as a first sensor measurement z0 and initialing the system as

x̂0 = [x0, y0, z0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T = hinv(z0). (18)

To obtain (x0, y0, z0), we first calculate an initial target position in the camera-
coordinate frame xcam0 then, noting that the robot frame at time 0 is also the
world frame, we can map to the world coordinate frame by


x0
y0
z0
1

 =
(
T
R/C

)−1


xcam0

ycam0

zcam0

1

 . (19)

Inspecting the system in Eq. 13, we can find xcam0 and ycam0 given ut and vt if
zcam0 is known. We can obtain zcam0 from wimg0 or himg0 . We use zimg0 = f ·h/himg0

on the assumption that the user-specified bounding box is more accurate vertically
than horizontally.
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2.3.4 Noise parameters

The sensor noise is given by the matrix St. We assume that the measurement noise
for both the bounding box center and the bounding box size are a fraction of the
target’s width and height in the image:

St = λ2


(wimgt )2 0 0 0

0 (himgt )2 0 0

0 0 (wimgt )2 0

0 0 0 (himgt )2

 . (20)

We use λ = 0.1 in our simulation that is 10% of the target width and height
represented by 2D bounding box in image. We receive this number after conducting
series of experiments with CAMSHIFT visual tracker in real environment. For
the initial state error denoted by P0, we propagate the measurement error for z0

through hinv(z0) and take into account the initial uncertainty about the target’s
velocity:

P0 = JhinvS0Jhinv + diag(0, 0, 0, η, η, η, 0, 0, 0, 0, 0, 0), (21)

η is a constant and Jhinv is the Jacobian of hinv(·) evaluated at z0.
We assume that the state transition noise covariance Qt is diagonal for simplic-

ity. We tie the covariance Qt to the target linear velocities (ẋt, ẏt, żt), AR.Drone
linear velocities (ẋrt , ẏ

r
t , ż

r
t ) and orientation (γrt , β

r
t , α

r
t ) odometry reading. We let[

vt
st

]
=

[ √
ẋ2t + ẏ2t + ż2t√

(γrt )2 + (βrt )2 + (δαrt )
2

]
, (22)

We let the entries of Qt corresponding to the target position be ∆2
t (ρ1v

2
t + ρ2)

and the entries of Qt corresponding to the target velocity be ∆2
t (ρ3v

2
t +ρ4). We let

the entries of Qt corresponding to the AR.Drone’s position be ∆2
t (ρ5s

2
t + ρ6), and

we let the entries of Qt corresponding to the robot’s orientation be ∆2
t (ρ7s

2
t + ρ8).

This noise distribution is overly simplistic and may ignore some factors, but it
is sufficient for the experiments reported in this paper. In total, there are nine
free parameters (η, ρ1, ρ2, · · · , ρ8) that must be determined through hand tuning
or calibration. In our simulation, we find optimal parameters free using gradient
decent.

2.3.5 Update algorithm

Given all the preliminaries specified in the previous sections, the update algo-
rithm is just the standard extended Kalman filter, with modification to handle
cases where the color region tracker fails due to occlusions or the target leaving
the field of view. When no sensor measurement zt is available, we simply predict
the system state and allow diffusion of the state covariance without sensor mea-
surement correction. When we do have a sensor measurement but the estimated
state is far from the predicted state, we reset the filter, using the existing robot
position and orientation but fixing the relative target state to that predicted by
hinv(zt) and fixing the elements of Pt by propagating the sensor measurement
error for zt through hinv(zt) as previously explained in Section 2.3.4. Here is a
summary of the algorithm:



14 Abdul Basit et al.

1. Input z0.
2. Calculate x̂0 and P0.
3. For t = 1, . . . , T , do

(a) predict x̂−
t = f(x̂t−1,ut−1),

(b) calculate Jft and Qt,
(c) predict P−t = JftPt−1J

T
ft + Qt.

(d) If zt is unavailable,
i. let x̂t = x̂−

t ,
ii. let Pt = P−t .

(e) Otherwise
i. calculate Jht

, St, and Kalman gain
Kt = P−t J

T
ht

(Jht
P−t J

T
ht

+ St)
−1,

ii. estimate x̂t = x̂−
t + Kt(zt − ht(x̂

−
t )),

iii. update the error estimate Pt = (I− KtJht
)P−t .

(f) If ‖x̂t − x̂−
t ‖ > σ, reset the filter.

3 Experimental setup

We tested the performance and efficacy of the proposed method by carrying out
experiments, not only on synthetic data, but also in real-world scenarios. Before
deploying to the real AR.Drone, we performed a simulation to test model correct-
ness and effectiveness. We then carried out real-world experiments in both indoor
and outdoor environments. We compare the proposed joint estimation model with
two baselines: 1) relative localization without any filtering, and 2) relative localiza-
tion with Kalman filter-based sensor correction but no joint estimation of purser
and target state. We analyze the data quantitatively for indoor and qualitatively
for outdoor environments.

For the simulation experiment, we generated pose data without any noise both
for the AR.Drone and target object. The data consist of the target’s simulated po-
sition with appropriate velocity and simulated AR.Drone’s odometry (orientation
and linear velocities). We used these as ideal ground truth trajectories. We then
produced noisy simulated odometry readings. In order to generate noisy trajecto-
ries, we added noise to the AR.Drone odometry data and to the 2D target bounding
box. Direct calculation of pursuer and targer positions from the noisy odometry
and noisy target bounding boxes gives us baseline method 1, i.e., sensor-only rel-
ative localization without filtering. We simulated a camera generating 640×480
images at 20 fps with a focal length of 550 pixels (horizontal field of view 60◦).

For the real-world experiments, we performed quantitative evaluation in indoor
environments, where we acquired ground truth data for the target and purser
using circular markers pasted on the two objects. The circular markers were of
a known diameter. We use a fixed, calibrated camera to track the markers in
order to estimate, as accurately as possible, real-world ground truth for both the
target and the AR.Drone using Krajńık and Nitsche method [22]. See Fig. 6 for
a photo of settings. We use these ground truth for computing root mean square
error (RMSE). We also tested the proposed visual tracker with the AR.Drone’s
front facing monocular camera in this indoor environment.

The outdoor environment is a more desirable environment for testing the pro-
posed methods for joint localization and visual tracker with the AR.Drone. How-
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Fig. 6 Markers on the target and AR.Drone localizing their world-coordinate position with
reference to an additional calibrated camera.

ever, we are deprived of ground truth data because we have tracked the target for
a longer period of time and the fixed camera was unable to keep the markers in
its field of view for the entire experiment duration. Therefore, we carried out a
qualitative outdoor evaluation in which we tested the stability and smoothness of
the proposed method’s estimates.

In both indoor and outdoor environments, the target object was a person wear-
ing distinctive clothing and a background containing trees, grass, chairs, shadows,
and diffuse light. The target moved with varying velocities and directions and was
followed by the AR.Drone under teleoperation. The operator adjusted the drone’s
position to follow target as smoothly as possible. Since the goal of this paper is to
asses localization only, we did not use an autonomous position controller for the
pursuer; this module will be assessed in future work.

Concerning the visual tracker, we have already reported speed and accuracy
tests for the algorithm on different platforms with different hand-held cameras [3].
In this paper we test the proposed visual tracker specifically on the front-facing
monocular camera of the AR.Drone, both in indoor and outdoor environments.
Additionally we test our the method with online pursuit video sequence by Klein
et al. [21], the result shows how the proposed method recover occlusion.

4 Results

In this section, we provide detailed results and analysis for each experiment out-
lined in the previous section.

We define two baseline methods as points of comparison with the proposed
joint state estimation method. The first baseline method does not use any filter
while tracking the target [6,1]; the sensor-based relative target position estimate
is simply accepted. Hence it is named “Localization with no filter correction.” The
second baseline uses sensor measurement correction based on an ordinary extended
Kalman filter [?] to smooth the target’s estimated trajectory in the pursuer robot’s
coordinate system. This baseline is named “Localization with sensor correction.” I
do not explicitly incorporate the pursuer’s odometry measurements either jointly
or separately in the baseline methods. The proposed method, however, jointly
corrects the pursuer’s odometry with the sensor measurement to produce better



16 Abdul Basit et al.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100

R
el

at
iv

e 
ta

rg
et

 p
o
si

ti
o
n
 e

rr
o
r

% odometry error

Estimated joint target position error on various 
 level of odometry noise

No filter correction
Localization based on sensor correction

Joint localization method

Fig. 7 Experiment I: We simulated the pursuit robot with different levels of odometry noise
and measured the average relative target position error for the three estimation methods. Error
bars denote 95% confidence intervals.

performance. The proposed joint localization integrate target and robot pose in a
joint state space model, shown in Eq 1. ”

4.1 Experiment I: Joint localization simulation

First we demonstrate the efficacy of fusing target dynamics and AR.Drone kine-
matics in one state space model in a simulation experiment. We simulated scenarios
containing different levels of AR.Drone odometry noise, while keeping the sensor
noise constant. The noise ranged from 0% to 110%. The proposed method shows
significant improvement over the baseline methods so long as noise level is below
30%. Performance deteriorates above the 40% noise level. The performance of the
other two methods remains constant over odometry noise levels because they do
not use odometry data.

We also evaluated the joint localization model with synthetic data in which a
moving UAV chased a moving target. At each iteration of localization the RMSE
is computed between the estimated and ground truth target positions in the robot
coordinate frame, using each of the three methods. We also suspend joint local-
ization when visual tracker suspend target tracking and wait for the detector to
redetect the target and reinitialize the visual tracker that also reinitialize the joint
localization. See the first graph of Fig. 8 (c). The proposed method provides more
stable and smooth estimates than the baseline methods.

We performed statistical tests on the RMSE of each method compared to
ground truth for odometry noise of 15%. The result is shown in the bottom of the
Fig. 8 (c). The proposed method outperforms the existing methods by 65% and
25%.
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Fig. 8 Experiment I and II: Quantitative evaluation with real world (indoor) and synthetic
data. First row shows relative target position root mean squared error (RMSE) of the target in
the robot coordinate frame. Second row reflects accumulated average error with 95% confidence
interval. (a) Real world indoor experiment in closed hall. The proposed method is smooth and
stable, 44% and 22% better than other two methods. (b) Indoor experiment in a corridor.
RMSE is lower 56% and 28% than other methods (c) Simulation with synthetic data. Propose
method outperforms 75% tracking method without model-based correction and 27% sensor-
based correction.

4.2 Experiment II: Indoor joint localization

In experiment II, we carried out indoor experiments with quantitative analysis.
We used ground truth data as for comparison between the proposed and existing
methods.

At every iteration of each algorithm, at time t, we transformed the target
position (xt, yt, zt) to the AR.Drone coordinate reference frame. We calculated
root mean squared error between each method’s estimate and ground truth. See
Fig. 8 (a) and 8 (b) top row. We collapse the results multiple indoor runs into two
cases, a large open room and a corridor.

The proposed method clearly obtains smoother and more stable estimates com-
pared to the baseline methods. Although relative localization with sensor correc-
tion produces better results when compared with localization with no filter, our
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joint localization method, fusing sensor measurements and odometry data, pro-
duces additional improvement.

As with the simulation data, we computed the average root mean square error
over all runs. The results is shown in the bottom row of Fig. 8 (a) and 8 (b).
The results show that the filtering methods help to smooth the raw sensor mea-
surements, but the proposed joint localization method outperforms not only the
method with no filter but also relative localization with sensor correction. Joint lo-
calization improves relative estimation by relative to the first baseline and relative
to the second baseline method.

4.3 Experiment III: Outdoor joint localization

As mentioned earlier, though quantitative analysis is not possible outdoors, we
did perform an outdoor experiment to ensure the practicality of the proposed
approach. We evaluated our method at several stages of the visual tracking and
localization process. First we show results when the target is standing still and
the UAV is simply hovering. See Fig. 9 (a). Next we show results when the target
is moving with variable velocity and the UAV is accelerating to catch up with the
target. See Fig. 9 (b). Finally, we show results when sensor noise increases due to
changes in background and lighting. See Fig. 9 (c).

Refer to Fig. 9 (a). The estimated X position varies between 5.5 and 7.5 meters,
a range of 2 meters. Recall from X Fig. 1 that the target’s position is the distance
of the target from the AR.Drone in the forward direction. The proposed method’s
estimated trajectory, shown in red, is smoother and has lower variance than that
of the other methods. The spikes in the trajectory reflect noisy variation in the
estimated 2D bounding box’s size. The joint localization method infers smooth
transitions between neighbouring intervals. The estimated Y position varies be-
tween 0 and 0.4 meters. The variation is lower on this axis, reflecting lower noise
in the estimated left-right position of the 2D bounding box. The proposed method
again performs better than the baseline methods. Finally the estimated Z position
varies between -0.5 and -1.2 meters. We observe more spikes or jerking movements
on this axis, generally caused by the UAV’s pitch control. The Z position estimates
are again smoother than for other baseline methods. Overall, the joint localization
method clearly performs better than the baseline methods.

Next, refer to Fig. 9 (b). During this period, the target is moving away from
AR.Drone which is attempting to catch up. The AR.Drone begins accelerating at
t = 200 and decelerating at t = 265. The estimated X position varies between 5.5
and 8.0 meters. The large black-dotted spike indicates extreme sensor noise when
the AR.Drone started decelerating. ẋrt is minimized when the pitch βrt = 0. The
same spike can be observed in the Y target position in the robot coordinate frame.
Here the noise varies between 0 and 0.6 meters. Clearly the proposed method is
smoother and more stable along both the X and Y axis, even with the velocity
variation of the AR.Drone. Finally, the estimated Z position varies between -1 and
0.5 meters. The change in Z at t = 213 is caused by the UAV’s forward pitch,
causing it to move. When the AR.Drone decelerates, we obtain noise in sensor
and odometry measurements, so we observe more variability between t = 270 and
t = 295. The overall performance of joint localization is clearly better than the
other methods.
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Fig. 9 Experiment III: outdoor qualitative evaluation. Stability and smoothness of the target’s
position (X, Y , Z) in the robot coordinate frame where X is forward, Y is left and Z is
upward. Each sub figure shows noise on y-axis ranging in meters, while the time t on x-axis
varies between time 1 and 550, distributed over all columns. (a). Localization when target
is stationary and UAV is simply hovering. The peaks at t = 130 in Y and Z graphs are
generated when UAV moves to adjust its position relative to the target. (b). When target is
moving and UAV is accelerating at t = 210 and decelerating at t = 260 to catch up. (c). When
the AR.Drone visual sensor noise increased because of lighting and more clutter background.
Higher noise in X shows higher variance due to 2D bounding box error.

Now we turn to Fig. 9 (c). We observe increased no of spikes in the trajectories
caused by error in the 2D bounding box estimates. This noise results in unstable
predictions and more challenging to the proposed joint localization method. The
X estimated position of the target varies between 5.4 and 10 meters, the estimated
Y position varies between 0 and 0.8 meters and the estimated Z position varies
between -1.5 and 0.6 meters. The proposed method performs better than the other
two method in terms of stability and smoothness.

4.4 Experiment IV: Visual tracking

We tested the visual tracker in both indoor and outdoor environments. In Fig. 10,
the first column show outdoor results, captured by AR.Drone. Second column
show results of an online pursuit video sequence by Klein et al. [21], and the last
two columns show indoor results captured by AR.Drone in a large open room and
corridor.

Based on the first frame of each video (R1 in Fig. 10), we initialized CAMSHIFT
tracking by manually providing a bounding box for the human target in the scene.
We then ran the proposed tracking, suspension, and redetection method to the
end of each video.
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R1: Frame before
tracking initialization

R2: Target leaves the
scene

R3: Candidate regions
(none are selected)

R4: Target object
returns to the scene

R5: Selected candidate
regions (target is
selected)

R6: CAMSHIFT
reinitialization

Fig. 10 Experiment IV: The proposed method was tested in different outdoor environments
with different background and target objects. Each column shows images from a different
video. Rows show results of each step of processing. Blue colored rows show processing when
the target is not in the scene. Yellow colored rows show the same processing steps when the
target returns to the scene.

During tracking, we incrementally updated the mean µt and standard deviation
σt of the distance dt between the appearance model Hm and the tracked target’s
color histogram Hr

t . In almost all cases, when the target left the scene, the distance
dt exceeded the adaptive threshold, except for a few cases in which the redetection
algorithm found a sufficiently similar object in the background.

Rows R2 and R3 in Fig. 10 show example images acquired when the target
was absent from the camera field of view. At this point in each video, CAMSHIFT
tracking is suspended and the redetection algorithm is running, correctly reporting
the absence of the target from the field of view.

Rows R4 and R5 in Fig. 10 show example images acquired after the target
has returned to the field of view. The proposed method eventually successfully
identifies the candidate region among the possible candidates. In the figure, the
selected region is surrounded by a red rectangle.

In each case, CAMSHIFT is correctly reinitialized, as shown in row R6 of
Fig. 10.

Over the four videos, the target was successfully tracked in 95.6% of the frames
in which the target was in the scene, with false positives only 4.4% of the frames
in which the target was not in the scene. The accuracy results on a per video basis
are summarized in Table 1.
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Table 1 Experiment IV accuracy measurement: For each video, we report the no of frames the
target is visible and occluded or outside FOV, the existence of multiple objects in the image
scene, the percentage of frames containing the target in which target was correctly tracked,
and the percentage of frames not containing the target in which the target was falsely detected.
Incorrect suspension can be calculated by 100% - true.

Video
Frames w. target Multiple Detection ratio
present absent objects true false

a 389 50 Yes 96.8% 2.0%
b 997 20 Yes 98.9% 0.0%
c 541 150 No 88.8% 5.3%
d 426 174 No 97.3% 3.4%

We tested the runtime performance of the system on two different hardware
configurations, a 2.26 GHz Intel Core i3 laptop running 32-bit Ubuntu Linux 11.10
and a 1.6 GHz Intel Atom N280 single core netbook running 32-bit Lubuntu 11.10.
The results are summarized in Table 2. Both algorithms run at high frame rates,
with the worst case of just over 10 fps for redetection on the Atom processor. The
method is clearly feasible for onboard execution by a mobile robot with modest
computational resources.

Table 2 Experiment IV: Runtime performance of visual tracking and redetection algorithms
on two different processors.

Redetection Phase Tracking Phase
Core i3 Atom N280 Core i3 Atom N280

41.455ms 91.232ms 16.340ms 49.234ms

5 Conclusion

In this paper, we propose a joint localization method that fuses target dynamics
and UAV kinematics into one state space model, and we demonstrate how to
integrate sensor measurements from a moving monocular camera into the resulting
filter. We show that joint localization produces more stable, smooth, and noise-
resistant trajectories than those produced by standard filters. The joint localization
filter performs well even when there are sudden changes in the sensor measurement
indicating an erroneous detection or a rapid change of the target object’s position.

We have also proposed a computationally efficient and accurate visual tracker
that can deal with situations where the object disappears from the field of view.
The target’s 3D position is inferred by the tracker from the bounding box of its
projection into the 2D image. The result is an estimated trajectory sufficiently
smooth to use in a pursuit robot. In a series of experiments, we show that the
proposed filtering technique outperforms traditional filtering methods.

In future work, we plan to further investigate adaptive and discriminative mod-
eling of the target and the background, to address situations in which the target’s
appearance varies as it moves through areas with different lighting conditions and
backgrounds.
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