340 research outputs found
Use of hemispherical piiotographs in forest ecology
Hemispherical photographs (hemiphots) taken from the ground looking up at the forest canopy provide a record of the canopy. They can be analysed to compute either relative or, more usefully, absolute measures of solar radiation for the sample point, taking account of the contributions of direct (beam or sun) and indirect (diffuse or sky) radiation. Hemiphots can be obtained more easily and cheaply than instrumental measurements especially in remote areas. After explaining the geometry and terminology of hemiphots and solar radiation this paper describes the methods of computing absolute amounts of radiation, dealing with direct and indirect radiation separately and summing for the total as a final step. The first method uses the product of measured radiation incident above the canopy and site factors computed from the hemiphot. Site factors are a relative measure of radiation defined as the fraction of incident radiation that reaches the ground. Direct and indirect site factors must each be calculated with appropriate weighting for the angular distribution of radiation. The second method is based on the known, constant amount of solar radiation available above the earth's atmosphere (the solar constant) and its attenuation by the atmosphere. Unfortunately, only direct radiation can be computed in this way. Neither method of computing solar radiation from hemiphots is completely independent of instrumental measurements or estimates of incident radiation for the site. The use of hemiphots (or instrumental measurements) for mapping radiation on the ground is discussed. Interpolation between sample points is a sound procedure only for long-term average radiation and where the canopy is homogeneous, having small holes uniformly distributed. In other circumstances there are unpredictable discontinuities in the amount of radiation which make mapping unreliable. Hemiphots are an invaluable tool in forest ecology but they require some instrumental measurements to be able to compute absolute amounts of radiation. Checklists of steps in computation and sources of error are given. Because of the relatively low precision of field measurements of radiation close agreement is not to be expected between computed and measured values. Attention is drawn to the assumptions that must be made in computing radiation from hemiphots as these should always be clearly stated, and tested where possible
Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions
Event-by-event fluctuations in the multiplicities of charged particles and
photons, and the total transverse energy in 158 GeV Pb+Pb collisions
are studied for a wide range of centralities. For narrow centrality bins the
multiplicity and transverse energy distributions are found to be near perfect
Gaussians. The effect of detector acceptance on the multiplicity fluctuations
has been studied and demonstrated to follow statistical considerations. The
centrality dependence of the charged particle multiplicity fluctuations in the
measured data has been found to agree reasonably well with those obtained from
a participant model. However for photons the multiplicity fluctuations has been
found to be lower compared to those obtained from a participant model. The
multiplicity and transverse energy fluctuations have also been compared to
those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on
errors and few figures modifie
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Dynamics of tree diversity in undisturbed and logged subtropical rainforest in Australia
In subtropical rainforest in eastern Australia, changes in the diversity of trees were compared under natural conditions and eight silvicultural regimes over 35 years. In the treated plots basal area remaining after logging ranged from 12 to 58 m2 per ha. In three control plots richness differed little over this period. In the eight treated plots richness per plot generally declined after intervention and then gradually increased to greater than original diversity. After logging there was a reduction in richness per plot and an increase in species richness per stem in all but the lightest selective treatments. The change in species diversity was related to the intensity of the logging, however the time taken for species richness to return to pre-logging levels was similar in all silvicultural treatments and was not effected by the intensity of treatment. These results suggest that light selective logging in these forests mainly affects dominant species. The return to high diversity after only a short time under all silvicultural regimes suggests that sustainability and the manipulation of species composition for desired management outcomes is possible
Forest Biodiversity Assessment in Peruvian Andean Montane Cloud Forest
Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as rega rds biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the ?Bosque de Neblina de Cuyas?, in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
Predicted Pleistocene-Holocene range shifts of the tiger (Panthera tigris)
Aim
In this article, we modelled the potential range shifts of tiger (Panthera tigris) populations over the Late Pleistocene and Holocene, to provide new insights into the evolutionary history and interconnectivity between populations of this endangered species.
Location
Asia.
Methods
We used an ecological niche approach and applied a maximum entropy (Maxent) framework to model potential distributions of tigers. Bioclimatic conditions for the present day and mid-Holocene, and for the Last Glacial Maximum (LGM), were used to represent interglacial and glacial conditions of the Late Pleistocene, respectively.
Results
Our results show that the maximum potential tiger range during modern climates (without human impacts) would be continuous from the Indian subcontinent to north-east Siberia. During the LGM, distributions are predicted to have contracted to southern China, India and Southeast Asia and remained largely contiguous. A potential distribution gap between Peninsular Malaya and Sumatra could have effectively separated tigers on the Sunda Islands from those in continental Asia during interglacials.
Main conclusions
The continuous modelled distribution of tigers in mainland Asia supports the idea of mainly unimpeded gene flow between all populations throughout the Late Pleistocene and Holocene. Thus, our data support a pragmatic approach to tiger conservation management, especially of mainland populations, as it is likely that only recent anthropogenic changes caused separation of these populations. In contrast, Sunda tigers are likely to have separated and differentiated following the Last Glacial Maximum and thus warrant separate management
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
- …
