82 research outputs found
Magnesium deficiency: effect on bone mineral density in the mouse appendicular skeleton
BACKGROUND: Dietary magnesium (Mg) deficiency in the mouse perturbs bone and mineral homeostasis. The objective of the present study was to evaluate bone mineral density of the femur in control and Mg-deficient mice. METHODS: BALB/c mice aged 28 days at study initiation were maintained on a normal or Mg deficient (0.0002% Mg) diet, and at time points 0, 2, 4 or 6 weeks bones were harvested for bone mineral density analysis. Peripheral quantitative computed tomography (pQCT) was used to assess the trabecular metaphyseal compartment and the cortical midshaft. RESULTS: Although mean total bone density of the femoral midshaft in Mg deficient mice did not differ significantly from controls throughout the study, the trabecular bone compartment showed significantly decreased mineral content after 4 (p < 0.001) and 6 weeks (p < 0.001) of Mg depletion. CONCLUSIONS: This study demonstrates the profound effect of Mg depletion on the trabecular compartment of bone, which, with its greater surface area and turnover, was more responsive to Mg depletion than cortical bone in the appendicular skeleton of the mouse
Direct and Indirect Induction of a Compensatory Phenotype that Alleviates the Costs of an Inducible Defense
Organisms often exhibit phenotypic plasticity in multiple traits in response to impending environmental change. Multiple traits phenotypic plasticity is complex syndrome brought on by causal relations in ecological and physiological context. Larvae of the salamander Hynobius retardatus exhibit inducible phenotypic plasticity of two traits, when at risk of predation by dragonfly larvae. One induced phenotype is an adaptive defense behaviour, i.e., stasis at the bottom of water column, directly triggered by the predation risk. Another one is a compensatory phenotype, i.e., enlarged external gills, for an unavoidable cost (hypoxia) associated with the induced defense. We identified two ways by which this compensatory phenotype could be induced. The compensatory phenotype is induced in response to not only the associated hypoxic conditions resulting from the induced defense but also the most primary but indirect cause, presence of the predator
Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain
BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression
A Meta-Analysis of Local Adaptation in Plants
Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption) only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals) than for small populations (<1000 flowering individuals) for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments
The Complement Anaphylatoxin C5a Induces Apoptosis in Adrenomedullary Cells during Experimental Sepsis
Sepsis remains a poorly understood, enigmatic disease. One of the cascades crucially involved in its pathogenesis is the complement system. Especially the anaphylatoxin C5a has been shown to have numerous harmful effects during sepsis. We have investigated the impact of high levels of C5a on the adrenal medulla following cecal ligation and puncture (CLP)-induced sepsis in rats as well as the role of C5a on catecholamine production from pheochromocytoma-derived PC12 cells. There was significant apoptosis of adrenal medulla cells in rats 24 hrs after CLP, as assessed by the TUNEL technique. These effects could be reversed by dual-blockade of the C5a receptors, C5aR and C5L2. When rats were subjected to CLP, levels of C5a and norepinephrine were found to be antipodal as a function of time. PC12 cell production of norepinephrine and dopamine was significantly blunted following exposure to recombinant rat C5a in a time-dependent and dose-dependent manner. This impaired production could be related to C5a-induced initiation of apoptosis as defined by binding of Annexin V and Propidium Iodine to PC12 cells. Collectively, we describe a C5a-dependent induction of apoptotic events in cells of adrenal medulla in vivo and pheochromocytoma PC12 cells in vitro. These data suggest that experimental sepsis induces apoptosis of adrenomedullary cells, which are responsible for the bulk of endogenous catecholamines. Septic shock may be linked to these events. Since blockade of both C5a receptors virtually abolished adrenomedullary apoptosis in vivo, C5aR and C5L2 become promising targets with implications on future complement-blocking strategies in the clinical setting of sepsis
Supernova host galaxies in the Dark Energy Survey: I. Deep coadds, photometry, and stellar masses
The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimized coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other four seasons such that each SN has a corresponding deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order ∼27 in g band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multiband photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high-mass hosts at high-redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects
Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study
Abstract Background Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxins. Although there is growing evidence to support an association between PCBs and deficits of neurodevelopment, the specific mechanisms are not well understood. The potentially different roles of specific PCB groups defined by chemical structures or hormonal activities e.g., dioxin-like, non-dioxin like, or anti-estrogenic PCBs, remain unclear. Our objective was to examine the association between prenatal exposure to defined subsets of PCBs and neurodevelopment in a cohort of infants in eastern Slovakia enrolled at birth in 2002-2004. Methods Maternal and cord serum samples were collected at delivery, and analyzed for PCBs using high-resolution gas chromatography. The Bayley Scales of Infant Development -II (BSID) were administered at 16 months of age to over 750 children who also had prenatal PCB measurements. Results Based on final multivariate-adjusted linear regression model, maternal mono-ortho-substituted PCBs were significantly associated with lower scores on both the psychomotor (PDI) and mental development indices (MDI). Also a significant association between cord mono-ortho-substituted PCBs and reduced PDI was observed, but the association with MDI was marginal (p = 0.05). Anti-estrogenic and di-ortho-substituted PCBs did not show any statistically significant association with cognitive scores, but a suggestive association between di-ortho-substituted PCBs measured in cord serum and poorer PDI was observed. Conclusion Children with higher prenatal mono-ortho-substituted PCB exposures performed more poorly on the Bayley Scales. Evidence from this and other studies suggests that prenatal dioxin-like PCB exposure, including mono-ortho congeners, may interfere with brain development in utero. Non-dioxin-like di-ortho-substituted PCBs require further investigation
Echocardiography practice, training and accreditation in the intensive care: document for the World Interactive Network Focused on Critical Ultrasound (WINFOCUS)
Echocardiography is increasingly used in the management of the critically ill patient as a non-invasive diagnostic and monitoring tool. Whilst in few countries specialized national training schemes for intensive care unit (ICU) echocardiography have been developed, specific guidelines for ICU physicians wishing to incorporate echocardiography into their clinical practice are lacking. Further, existing echocardiography accreditation does not reflect the requirements of the ICU practitioner. The WINFOCUS (World Interactive Network Focused On Critical UltraSound) ECHO-ICU Group drew up a document aimed at providing guidance to individual physicians, trainers and the relevant societies of the requirements for the development of skills in echocardiography in the ICU setting. The document is based on recommendations published by the Royal College of Radiologists, British Society of Echocardiography, European Association of Echocardiography and American Society of Echocardiography, together with international input from established practitioners of ICU echocardiography. The recommendations contained in this document are concerned with theoretical basis of ultrasonography, the practical aspects of building an ICU-based echocardiography service as well as the key components of standard adult TTE and TEE studies to be performed on the ICU. Specific issues regarding echocardiography in different ICU clinical scenarios are then described
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
World Society of Emergency Surgery (WSES) guidelines for management of skin and soft tissue infections
Peer reviewe
- …