935 research outputs found

    A Comparison of Maize Stalk Rot Occurrence in Bt and Non-Bt Hybrids

    Get PDF
    Stalk rots, caused by a complex of fungal species, are among the most widespread and destructive diseases of maize. Larvae of the European corn borer (ECB) (Ostrinia nubilalis) promote stalk rot development by creating entry points for fungi, serving as vectors of pathogens, and causing physiological stress that may predispose plants to stalk decay. Field experiments were conducted in 1998, 1999, and 2000 to determine whether the use of transgenic Bt hybrids expressing insecticidal proteins would influence stalk rot symptoms (pith disintegration, pith discoloration, and lodging). Five hybrids representing different Bt types (or “Bt events”) (176, BT11, MON810, DBT418, and CBH351) were paired with their near-isogenic, non-Bt counterparts and subjected to treatments of manual and natural infestation with ECB larvae. Manual infestation resulted in significantly more ECB tunneling than natural infestation in 1998 and 1999 and significantly more lodging in 1998. There were significant linear correlations between ECB injury and stalk rot symptoms in non-Bt hybrids in 1998 and 1999, but not in 2000. A standard foliar insecticide treatment for ECB did not significantly affect stalk rot symptoms. In 1998, Bt hybrids had significantly less ECB tunneling, stalk discoloration, pith disintegration, and lodging compared with non-Bt hybrids, but these effects depended upon the Bt event and the infestation treatment. Similar but less pronounced effects of Bt events were observed in 1999. The 2000 results were more variable; the amount of pith disintegration was significantly lower but discoloration was significantly higher in the BT11 hybrid compared with its non-Bt counterpart, and the amount of lodging was significantly higher in the event 176 hybrid compared with its non-Bt counterpart. The ratio of stalk strength to grain weight did not consistently differ between Bt and non-Bt hybrids. These results indicate that, although specific Bt events in some years may cause reductions in stalk rot, the overall effect of Bt transformation on stalk rot occurrence is highly variable

    Cognitive and emotional empathy in individuals at clinical high risk of psychosis

    Get PDF
    Background Impairments of social cognition are considered core features of schizophrenia and are established predictors of social functioning. However, affective aspects of social cognition including empathy have far less been studied than its cognitive dimensions. The role of empathy in the development of schizophrenia remains largely elusive. Methods Emotional and cognitive empathy were investigated in large sample of 120 individuals at Clinical High Risk of Psychosis (CHR-P) and compared with 50 patients with schizophrenia and 50 healthy controls. A behavioral empathy assessment, the Multifaceted Empathy Test, was implemented, and associations of empathy with cognition, social functioning, and symptoms were determined. Results Our findings demonstrated significant reductions of emotional empathy in individuals at CHR-P, while cognitive empathy appeared intact. Only individuals with schizophrenia showed significantly reduced scores of cognitive empathy compared to healthy controls and individuals at CHR-P. Individuals at CHR-P were characterized by significantly lower scores of emotional empathy and unspecific arousal for both positive and negative affective valences compared to matched healthy controls and patients with schizophrenia. Results also indicated a correlation of lower scores of emotional empathy and arousal with higher scores of prodromal symptoms. Conclusion Findings suggest that the tendency to 'feel with' an interaction partner is reduced in individuals at CHR-P. Altered emotional reactivity may represent an additional, early vulnerability marker, even if cognitive mentalizing is grossly unimpaired in the prodromal stage. Different mechanisms might contribute to reductions of cognitive and emotional empathy in different stages of non-affective psychotic disorders and should be further explored

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore