47 research outputs found

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Full text link
    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th^{\textrm{th}}, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500\pm500 s around the GW event time nor any time clustering of events over an extended time window of ±3\pm3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∌4×1054\sim4\times 10^{54} erg for a E−2E^{-2} spectrum

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration

    Get PDF
    Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data

    Get PDF
    [EN] The ANTARES detector is at present the most sensitive neutrino telescope in the northern hemisphere. The highly signiÂżcant cosmic neutrino excess observed by the Antarctic IceCube detector can be studied with ANTARES, exploiting its complementing Âżeld of view, exposure, and lower energy threshold. Searches for an all-Âżavor diffuse neutrino signal, covering nine years of ANTARES data taking, are presented in this Letter. Upward-going events are used to reduce the atmospheric muon background. This work includes for the Âżrst time in ANTARES both track-like (mainly nm) and shower-like (mainly ne) events in this kind of analysis. Track-like events allow for an increase of the effective volume of the detector thanks to the long path traveled by muons in rock and/or sea water. Shower-like events are well reconstructed only when the neutrino interaction vertex is close to, or inside, the instrumented volume. A mild excess of high-energy events over the expected background is observed in nine years of ANTARES data in both samples. The best Âżt for a single power-law cosmic neutrino spectrum, in terms of per-Âżavor Âżux at 100 TeV, is (1.7+-1.0)10-18 GeVÂż1 cmÂż2 sÂż1 srÂż1 with spectral index G=2.4+0.5-0.4. The null cosmic Âżux assumption is rejected with a signiÂżcance of 1.6Âż.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid RamĂ­rez, M.; Aubert, J.; Aublin, J.... (2018). All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. The Astrophysical Journal. 853(1):1-5. https://doi.org/10.3847/2041-8213/aaa4f6S158531Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., 
 Archinger, M. (2015). A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. The Astrophysical Journal, 809(1), 98. doi:10.1088/0004-637x/809/1/98Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., 
 Anderson, T. (2016). OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA. The Astrophysical Journal, 833(1), 3. doi:10.3847/0004-637x/833/1/3Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., 
 Arlen, T. C. (2014). Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 113(10). doi:10.1103/physrevlett.113.101101AdriĂĄn-MartĂ­nez, S., Al Samarai, I., Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., 
 Aubert, J.-J. (2012). SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. The Astrophysical Journal, 760(1), 53. doi:10.1088/0004-637x/760/1/53AdriĂĄn-MartĂ­nez, S., Albert, A., Al Samarai, I., AndrĂ©, M., Anghinolfi, M., Anton, G., 
 Aubert, J.-J. (2013). Measurement of the atmospheric Îœ ÎŒ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. The European Physical Journal C, 73(10). doi:10.1140/epjc/s10052-013-2606-4AdriĂĄn-MartĂ­nez, S., Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., 
 Basa, S. (2014). SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. The Astrophysical Journal, 786(1), L5. doi:10.1088/2041-8205/786/1/l5AdriĂĄn-MartĂ­nez, S., Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., 
 Barrios-MartĂ­, J. (2016). Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope. Physics Letters B, 760, 143-148. doi:10.1016/j.physletb.2016.06.051Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., AndrĂ©, M., 
 Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Aguilar, J. A., Samarai, I. A., Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., 
 Astraatmadja, T. (2011). Search for a diffuse flux of high-energy ΜΌ with the ANTARES neutrino telescope. Physics Letters B, 696(1-2), 16-22. doi:10.1016/j.physletb.2010.11.070Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., 
 Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098Aguilar, J. A., Albert, A., Anton, G., Anvar, S., Ardid, M., Assis Jesus, A. C., 
 Baret, B. (2010). Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector. Astroparticle Physics, 34(3), 179-184. doi:10.1016/j.astropartphys.2010.07.001Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., 
 Basa, S. (2017). An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope. The European Physical Journal C, 77(6). doi:10.1140/epjc/s10052-017-4979-2Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., 
 Basa, S. (2017). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 96(6). doi:10.1103/physrevd.96.062001Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., 
 Basa, S. (2017). An Algorithm for the Reconstruction of Neutrino-induced Showers in the ANTARES Neutrino Telescope. The Astronomical Journal, 154(6), 275. doi:10.3847/1538-3881/aa9709Barr, G. D., Robbins, S., Gaisser, T. K., & Stanev, T. (2006). Uncertainties in atmospheric neutrino fluxes. Physical Review D, 74(9). doi:10.1103/physrevd.74.094009BECHERINI, Y., MARGIOTTA, A., SIOLI, M., & SPURIO, M. (2006). A parameterisation of single and multiple muons in the deep water or ice. Astroparticle Physics, 25(1), 1-13. doi:10.1016/j.astropartphys.2005.10.005Bell, A. R. (1978). The acceleration of cosmic rays in shock fronts - I. Monthly Notices of the Royal Astronomical Society, 182(2), 147-156. doi:10.1093/mnras/182.2.147Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014Conrad, J., Botner, O., Hallgren, A., & PĂ©rez de los Heros, C. (2003). Including systematic uncertainties in confidence interval construction for Poisson statistics. Physical Review D, 67(1). doi:10.1103/physrevd.67.012002Enberg, R., Reno, M. H., & Sarcevic, I. (2008). Prompt neutrino fluxes from atmospheric charm. Physical Review D, 78(4). doi:10.1103/physrevd.78.043005Feldman, G. J., & Cousins, R. D. (1998). Unified approach to the classical statistical analysis of small signals. Physical Review D, 57(7), 3873-3889. doi:10.1103/physrevd.57.3873Fusco, L. A., & Margiotta, A. (2016). The Run-by-Run Monte Carlo simulation for the ANTARES experiment. EPJ Web of Conferences, 116, 02002. doi:10.1051/epjconf/201611602002Gaisser, T. K. (2016). Atmospheric neutrinos. Journal of Physics: Conference Series, 718, 052014. doi:10.1088/1742-6596/718/5/052014Hill, G. C., & Rawlins, K. (2003). Unbiased cut selection for optimal upper limits in neutrino detectors: the model rejection potential technique. Astroparticle Physics, 19(3), 393-402. doi:10.1016/s0927-6505(02)00240-2Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., & Sanuki, T. (2007). Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. Physical Review D, 75(4). doi:10.1103/physrevd.75.043006Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. (2006). Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Physical Review D, 74(3). doi:10.1103/physrevd.74.034018Mannheim, K., Protheroe, R. J., & Rachen, J. P. (2000). Cosmic ray bound for models of extragalactic neutrino production. Physical Review D, 63(2). doi:10.1103/physrevd.63.023003Palladino, A., Spurio, M., & Vissani, F. (2016). On the IceCube spectral anomaly. Journal of Cosmology and Astroparticle Physics, 2016(12), 045-045. doi:10.1088/1475-7516/2016/12/045Schnabel, J. (2013). Muon energy reconstruction in the ANTARES detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 725, 106-109. doi:10.1016/j.nima.2012.12.10

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Get PDF
    [EN] Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. Anall-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within +/- 500 s around the GW event time nor any time clustering of events over an extended time window of +/- 3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than similar to 1.2 x 10(55) erg for a E-2 spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time.The ANTARES Collaboration is grateful to the LIGO Scientific Collaboration and the Virgo Collaboration for the setting up of an impressive follow-up observation program, and for sharing invaluable scientific information for the benefit of the emerging multi-messenger astronomy. The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid RamĂ­rez, M.; Aubert, J.; Avgitas, T.... (2017). All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope. The European Physical Journal C. 77(12):1-7. https://doi.org/10.1140/epjc/s10052-017-5451-zS177712B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)B.P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016)B.P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017)P. MĂ©szĂĄros, Rep. Prog. Phys. 69, 2259 (2006)E. Waxman, J. Bahcall, Phys. Rev. Lett. 78, 2292 (1997)A. Beloborodov, Mon. Not. R. Astron. Soc. 407, 1033 (2010)R. Perna et al., Astrophys. J. Lett. 821, L18 (2016)K. Murase et al., Astrophys. J. Lett. 822, L9 (2016)K. Kotera, J. Silk, Astrophys. J. Lett. 823, L29 (2016)I. Bartos et al., Astrophys. J. 835, 2 (2017)S. AdriĂĄn-MartĂ­nez et al., JCAP 02, 062 (2016)The GCN circulars published by the collaborating astronomers related to GW170104 are archived at http://gcn.gsfc.nasa.gov/other/G268556.gcn3S. AdriĂĄn-MartĂ­nez et al., J. Instrum. 7, T08002 (2012)J.A. Aguilar et al., Astropart. Phys. 34, 539 (2011)J. Aguilar et al., Nucl. Instrum. Methods A 570, 107 (2007)A. Kappes et al., J. Phys. Conf. Ser. 60, 243 (2007)M. Ageron et al., Nucl. Instrum. Methods A 656, 11 (2011)J. Veitch et al., Phys. Rev. D. 91, 042003 (2015)B. Baret et al., Astropart. Phys. 35, 1 (2011)S. AdriĂĄn-MartĂ­nez et al., Phys. Rev. D. 93, 122010 (2016)S. AdriĂĄn-MartĂ­nez et al., Phys. Rev. D. 96, 022005 (2017)S. AdriĂĄn-MartĂ­nez et al., Astrophys. J. 760, 53 (2012)A. Albert et al., Phys. Rev. D. 96, 082001 (2017)A. Margiotta, Nucl. Instrum. Methods A 725, 98 (2013)L. Fusco, A. Margiotta, Eur. Phys. J. Web Conf. 116, 02002 (2016)S. AdriĂĄn-MartĂ­nez et al., Eur. Phys. J. C 77, 20 (2017)J. Braun et al., Astropart. Phys. 29, 299 (2008)M.G. Aartsen et al., Science 342, 1242856 (2013)L. Singer et al., Astrophys. J. Lett. 829, 15 (2016

    Search for relativistic magnetic monopoles with five years of the ANTARES detector data

    Get PDF
    [EN] A search for magnetic monopoles using five years of data recorded with the ANTARES neutrino telescope from January 2008 to December 2012 with a total live time of 1121 days is presented. The analysis is carried out in the range b>0.6 of magnetic monopole velocities using a strategy based on run-by-run Monte Carlo simulations. No signal above the background expectation from atmospheric muons and atmospheric neutrinos is observed, and upper limits are set on the magnetic monopole flux ranging from 5.7x10-16 to 1.5x10-18 cm-2 . s-1.sr-1.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO): Plan Estatal de Investigacion (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilitiesAlbert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid RamĂ­rez, M.; Aubert, J.; Avgitas, T.... (2017). Search for relativistic magnetic monopoles with five years of the ANTARES detector data. Journal of High Energy Physics (Online). (7):1-16. https://doi.org/10.1007/JHEP07(2017)054S1167P.A.M. Dirac, Quantized Singularities in the Electromagnetic Field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [ INSPIRE ].G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [ INSPIRE ].A.M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194 [ INSPIRE ].G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Magnetic Monopoles From Superstring Models, Phys. Rev. Lett. 58 (1987) 1707 [ INSPIRE ].Y.M. Cho and D. Maison, Monopoles in Weinberg-Salam model, Phys. Lett. B 391 (1997) 360 [ hep-th/9601028 ] [INSPIRE].Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [ INSPIRE ].L. Patrizii and M. Spurio, Status of Searches for Magnetic Monopoles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 279 [ arXiv:1510.07125 ] [INSPIRE].ATLAS collaboration, Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052009 [ arXiv:1509.08059 ] [ INSPIRE ].MoEDAL collaboration, B. Acharya et al., Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC, JHEP 08 (2016) 067 [ arXiv:1604.06645 ] [INSPIRE].MoEDAL collaboration, B. Acharya et al., Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC, Phys. Rev. Lett. 118 (2017) 061801 [ arXiv:1611.06817 ] [INSPIRE].T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [ INSPIRE ].J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979) 1365 [ INSPIRE ].A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [ INSPIRE ].D. Ryu, H. Kang and P.L. Biermann, Cosmic magnetic fields in large scale filaments and sheets, Astron. Astrophys. 335 (1998) 19 [ astro-ph/9803275 ] [ INSPIRE ].E.N. Parker, The Origin of Magnetic Fields, Astrophys. J 160 (1970) 383.ANTARES collaboration, M. Ageron et al., ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [ arXiv:1104.1607 ] [INSPIRE].ANTARES collaboration, S. Adrian-Martinez et al., Search for Relativistic Magnetic Monopoles with the ANTARES Neutrino Telescope, Astropart. Phys. 35 (2012) 634 [ arXiv:1110.2656 ] [ INSPIRE ].IceCube collaboration, M.G. Aartsen et al., Searches for Relativistic Magnetic Monopoles in IceCube, Eur. Phys. J. C 76 (2016) 133 [ arXiv:1511.01350 ] [INSPIRE].ANTARES collaboration, J.A. Aguilar et al., The data acquisition system for the ANTARES Neutrino Telescope, Nucl. Instrum. Meth. A 570 (2007) 107 [ astro-ph/0610029 ] [INSPIRE].D.R. Tompkins, Total energy loss and Čerenkov emission from monopoles, Phys. Rev. 138 (1965) B248.Y. Kazama, C.N. Yang and A.S. Goldhaber, Scattering of a Dirac Particle with Charge Ze by a Fixed Magnetic Monopole, Phys. Rev. D 15 (1977) 2287 [ INSPIRE ].S.P. Ahlen, Monopole Track Characteristics in Plastic Detectors, Phys. Rev. D 14 (1976) 2935 [ INSPIRE ].S.P. Ahlen, Stopping Power Formula for Magnetic Monopoles, Phys. Rev. D 17 (1978) 229 [ INSPIRE ].J. Derkaoui et al., Energy losses of magnetic monopoles and of dyons in the earth, Astropart. Phys. 9 (1998) 173 [ INSPIRE ].CERN Application Software Group, GEANT 3.21 Detector Description and Simulation Tool, CERN Program Library Long Writeup W5013 (1993).G. Carminati, A. Margiotta and M. Spurio, Atmospheric MUons from PArametric formulas: A fast GEnerator for neutrino telescopes (MUPAGE), Comput. Phys. Commun. 179 (2008) 915 [ arXiv:0802.0562 ] [INSPIRE].Y. Becherini, A. Margiotta, M. Sioli and M. Spurio, A parameterisation of single and multiple muons in the deep water or ice, Astropart. Phys. 25 (2006) 1 [ hep-ph/0507228 ] [INSPIRE].J. Brunner, ANTARES simulation tools, in proceedings of The VLVnT workshop, Amsterdam (2003), http://www.vlvnt.nl/proceedings.pdf .ANTARES collaboration, A. Margiotta, Common simulation tools for large volume neutrino detectors, Nucl. Instrum. Meth. A 725 (2013) 98 [ INSPIRE ].V. Agrawal, T.K. Gaisser, P. Lipari and T. Stanev, Atmospheric neutrino flux above 1-GeV, Phys. Rev. D 53 (1996) 1314 [ hep-ph/9509423 ] [INSPIRE].G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in Atmospheric Neutrino Fluxes, Phys. Rev. D 74 (2006) 094009 [ astro-ph/0611266 ] [INSPIRE].L. Fusco and A. Margiotta, The Run-by-Run Monte Carlo simulation for the ANTARES experiment, EPJ Web Conf. 116 (2016) 02002.ANTARES collaboration, J.A. Aguilar et al., A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope, Astropart. Phys. 34 (2011) 652 [ arXiv:1105.4116 ] [INSPIRE].ANTARES collaboration, S. Adrian-Martinez et al., Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope, Astrophys. J. 786 (2014) L5 [ arXiv:1402.6182 ] [INSPIRE].G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [ physics/9711021 ] [INSPIRE].G.C. Hill and K. Rawlins, Unbiased cut selection for optimal upper limits in neutrino detectors: The model rejection potential technique, Astropart. Phys. 19 (2003) 393 [ astro-ph/0209350 ] [ INSPIRE ].ANTARES collaboration, J.A. Aguilar et al., Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector, Astropart. Phys. 34 (2010) 179 [ arXiv:1007.1777 ] [ INSPIRE ].ANTARES collaboration, S. Adrian-Martinez et al., Measurement of the atmospheric Îœ ÎŒ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope, Eur. Phys. J. C 73 (2013) 2606 [ arXiv:1308.1599 ] [INSPIRE].ANTARES collaboration, S. Adrian-Martinez et al., First Search for Point Sources of High Energy Cosmic Neutrinos with the ANTARES Neutrino Telescope, Astrophys. J. 743 (2011) L14 [ arXiv:1108.0292 ] [INSPIRE].ANTARES collaboration, P. Amram et al., The ANTARES optical module, Nucl. Instrum. Meth. A 484 (2002) 369 [ astro-ph/0112172 ] [INSPIRE].ANTARES collaboration, J.A. Aguilar et al., Transmission of light in deep sea water at the site of the ANTARES Neutrino Telescope, Astropart. Phys. 23 (2005) 131 [ astro-ph/0412126 ] [ INSPIRE ].MACRO collaboration, M. Ambrosio et al., Final results of magnetic monopole searches with the MACRO experiment, Eur. Phys. J. C 25 (2002) 511 [ hep-ex/0207020 ] [INSPIRE].BAIKAL collaboration, K. Antipin et al., Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope, Astropart. Phys. 29 (2008) 366 [ INSPIRE ].KM3Net collaboration, S. Adrian-Martinez et al., Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [ arXiv:1601.07459 ] [INSPIRE]

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    corecore