49 research outputs found

    Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon

    Get PDF
    In this study, we quantified the contribution of forest-derived carbon (FDC) to the soil organic C (SOC) pool along a natural succession from savanna (S) to mixed Marantaceae forest (MMF) in the Lopè National Park, Gabon. Four 1-ha plots, corresponding to different stages along the natural succession, were used to determine the SOC stock and soil C isotope composition (δ13C) to derive the FDC contribution in different soil layers down to 1 m depth. Besides, to investigate changes in SOC stability, we determined the 14C concentration of SOC to 30 cm depth and derived turnover time (TT). Results indicated that SOC increased only at the end of the succession in the MMF stage, which stored 46% more SOC (41 Mg C ha−1) in the 0–30 cm depth than the S stage (28.8 Mg C ha−1). The FDC contribution increased along forest succession affecting mainly the top layers of the initial successional stages to 15 cm depth and reaching 70 cm depth in the MMF stage. The TT suggests a small increase in stability in the 0–5 cm layer from S (146 years) to MMF (157 years) stages. Below 5 cm, the increase in stability was high, suggesting that FDC can remain in soils for a much longer time than savanna-derived C. In conclusion, the natural succession toward Marantaceae forests can positively impact climate change resulting in large SOC stocks, which can be removed from the atmosphere and stored for a much longer time in forest soils compared to savanna soils

    Rare ground data confirm significant warming and drying in western equatorial Africa

    Get PDF
    Background The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios. Methods We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. Results Lopé’s weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of −75 mm per decade (total annual rainfall). Inter-annual climatic variability at Lopé is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with Lopé temperature and rainfall on multi-annual scales. Conclusions The Lopé long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at Lopé. The association between rainfall and the Atlantic cold tongue at Lopé lends some support for the ‘dry’ models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear

    Chimpanzee accumulative stone throwing

    Get PDF
    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites

    Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

    Get PDF
    Funding Information: This work is a product of the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk). J.A.G. was funded by the Natural Environment Research Council (NERC; NE/T011084/1 and NE/S011811/1) and the Netherlands Organisation for Scientific Research (NWO) under the Rubicon programme with project number 019.162LW.010. The traits field campaign was funded by a grant to Y.M. from the European Research Council (Advanced Grant GEM-TRAIT: 321131) under the European Union‘s Seventh Framework Programme (FP7/2007-2013), with additional support from NERC Grant NE/D014174/1 and NE/J022616/1 for traits work in Peru, NERC Grant ECOFOR (NE/K016385/1) for traits work in Santarem, NERC Grant BALI (NE/K016369/1) for plot and traits work in Malaysia and ERC Advanced Grant T-FORCES (291585) to Phillips for traits work in Australia. Plot setup in Ghana and Gabon were funded by a NERC Grant NE/I014705/1 and by the Royal Society-Leverhulme Africa Capacity Building Programme. The Malaysia campaign was also funded by NERC GrantNE/K016253/1. Plot inventories in Peru were supported by funding from the US National Science Foundation Long-Term Research in Environmental Biology program (LTREB; DEB 1754647) and the Gordon and Betty Moore Foundation Andes-Amazon Program. Plots inventories in Nova Xavantina (Brazil) were supported by the National Council for Scientific and Technological Development (CNPq), Long Term Ecological Research Program (PELD), Proc. 441244/2016-5, and the Foundation of Research Support of Mato Grosso (FAPEMAT), Project ReFlor, Proc. 589267/2016. During data collection, I.O. was supported by a Marie Curie Fellowship (FP7-PEOPLE-2012-IEF-327990). GEM trait data in Gabon was collected under authorisation to Y.M. and supported by the Gabon National Parks Agency. D.B. was funded by the Fondation Wiener-Anspach. W.D.K. acknowledges support from the Faculty Research Cluster ‘Global Ecology’ of the University of Amsterdam. M.S. was funded by a grant from the Ministry of Education, Youth and Sports of the Czech Republic (INTER-TRANSFER LTT19018). Y.M. is supported by the Jackson Foundation. We thank the two anonymous reviewers and Associate Editor G. Henebry for their insightful comments that helped improved this manuscript.Peer reviewedPostprin

    ENSO Drives interannual variation of forest woody growth across the tropics

    Get PDF
    Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high–temporal resolution dataset (for 1–13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr−1, with an interannual range 1.96–2.26 Pg C yr−1 between 1996–2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño–associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = −0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Consistent patterns of common species across tropical tree communities

    Get PDF

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Recent genetic connectivity and clinal variation in chimpanzees.

    Get PDF
    Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Funder: Max Planck Society Innovation Fund Heinz L. Krekeler FoundationMuch like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated
    corecore